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a b s t r a c t

Over the past few decades, composite materials are extensively used in various industries due to their
high specific stiffness, strength, weight sensitivity and cost-effectiveness. However, lack of complete con-
trol over the manufacturing process results in undesirable uncertainties, which in turn affect the vibra-
tional characteristics of systems. This paper presents a novel approach, referred to as polynomial
correlated function expansion (PCFE), for stochastic free vibration analysis of composite laminate. The
proposed approach facilitates a systematic mapping between the input and output variables by express-
ing the output in a hierarchical order of component functions. The component functions are expressed in
terms of extended bases and the unknown coefficients associated with the bases are determined by
employing homotopy algorithm. The proposed approach has been employed for stochastic free vibration
analysis of laminated composite plates. Results obtained using PCFE have been compared with results
obtained using radial basis function (RBF) and conventional response surface method (RSM). Compared
to RBF and RSM, PCFE yield more accurate result from considerably fewer sample points. Furthermore,
case studies with different ply orientations have also been performed. Based on the numerical results,
new physical insights have been drawn on dynamic behaviour of composite laminates.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The fiber reinforced plastic (FRP) composite materials are being
increasingly used in aerospace [1,2], automotive [3,4], marine [5,6]
and other engineering applications [7–9] for many years because of
their superior strength and stiffness to weight ratios, corrosion
resistance, structural tailoring capability etc. For the FRP composite
laminates, the processes of lay-up and curing are relatively com-
plex, involving more structural and material complications in con-
trast to conventional isotropic materials. Due to lack of complete
control over the manufacturing, uncertainties arise in geometrical
parameters and material properties, especially during hand layup
procedure. Some of the main reasons for composite material prop-
erty variations are lack of resin, excess resin between the layers, air
entrapment, incomplete curing of resin, delamination and number
of geometrical parameters such as fiber alignments, volume frac-
tions, voids and others. The presence of these uncertainties may
have substantial effects on the fundamental structural response
such as natural frequencies and mode shapes. It is, therefore,

important to incorporate uncertainties arising due to randomness
in material properties and structural configuration.

The most popular method for quantifying uncertainty is the
Monte Carlo simulation (MCS) [10,11]. This method involves deter-
ministic evaluation of response at randomly generated samples and
in most cases is straightforward to employ. A number of improve-
ments to MCS (e.g., Latin Hypercube sampling [12,13], stratified
sampling [14,15] etc.) have also been proposed. All these methods
can be grouped as statistical approach (SA). However, SA is compu-
tationally expensive, specifically for problems that are already com-
plicated in deterministic state. Thus, use of thesemethods is limited
to verification of newly developed methods only.

An advantageous alternative of the SA is the non-statistical
approach (NSA). Within the framework of NSA, one first determine
the responses at preselected samples, often termed as design of
experiments [16,17]. Next, a functional relationship is generated
by mapping the input and output variables. This functional rela-
tionship is the backbone of NSA. NSA that are popular among
researchers include but are not limited to polynomial chaos expan-
sion (PCE) [18–21], Kriging [22–24], radial basis function (RBF)
[25,26], conventional response surface method (RSM) [27,28],
moving least square [29,30] and high dimensional model represen-
tation [31–33].
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This paper introduces a novel approach, referred to as polyno-
mial correlated function expansion (PCFE) [34,35], for stochastic
free vibration analysis of composite plates. Compared to popular
NSA, PCFE has certain desirable properties. Firstly, PCFE is conver-
gent in mean square sense because the unknown coefficients asso-
ciated with the bases are determined by minimizing the L2 error
norm. Secondly, PCFE is a finite series consisting of 2N component
functions, where N is the number of random variables. Thus, if the
component functions are convergent, PCFE provides an exact
solution. Thirdly, PCFE is optimal in Fourier sense. This is because
the hierarchical orthogonality of the component function is satis-
fied while determining the unknown coefficients. Finally, PCFE
provides a common platform for dealing with both dependent
and independent random variables without the need of any ad
hoc transformations.

The main objective of this paper is to perform stochastic free
vibration analysis of laminated composite plates. The plate under
consideration consists of eight lamina as shown in Fig. 1. All the
edges are considered to be clamped. The material properties (den-
sity, elastic modulus, Poisson’s ratio and shear modulus), thickness
and ply orientations are considered to be random. As a
consequence, the system is having twenty-three random variables.
The study has been performed for four ply orientations, namely
(1) cross-ply (symmetric and anti-symmetric), (2) angle-ply

(symmetric and anti-symmetric), (3) quasi-isotropic ply and (4)
mixed ply. Results obtained have been benchmarked against MCS
solutions and other popular NSA.

The rest of the paper is organised as follows. After providing a
brief description of the finite element (FE) formulation in Section 2,
Section 3 describes the fundamentals of PCFE. Section 4 provides a
generalised framework for stochastic free vibration analysis of
laminated composite plate using PCFE. The results obtained are
presented in Section 5. Finally, Section 6 provides the concluding
remarks.

Fig. 1. Schematic diagram of laminated composite plate (not to scale) is having
eight lamina. All the edges of the plate are considered to be clamped.

Table 1
Description of random variables [43].

Sl. Variable Description Type Mean SD

1 E11 (MPa) Elastic modulus along longitudinal direction Lognormal 4.2 � 104 1512
2 E22 (MPa) Elastic modulus along lateral direction Lognormal 1.13 � 104 621.5
3 G12 (MPa) Shear modulus Lognormal 4.5 � 103 189
4 G13 (MPa) Shear modulus Lognormal 4.5 � 103 189
5 G23 (MPa) Shear modulus Lognormal 4 � 103 168
6 m12 Poisson’s ratio Lognormal 0.3 0.0042
7 d1 (mm) Thickness Rayleigh 0.45 0.058
8 d2 (mm) Thickness Rayleigh 0.45 0.058
9 d3 (mm) Thickness Rayleigh 0.45 0.058
10 d4 (mm) Thickness Rayleigh 0.45 0.058
11 d5 (mm) Thickness Rayleigh 0.45 0.058
12 d6 (mm) Thickness Rayleigh 0.45 0.058
13 d7 (mm) Thickness Rayleigh 0.45 0.058
14 d8 (mm) Thickness Rayleigh 0.45 0.058
15 qðt=mm3Þ Density Lognormal 1.9 � 10�9 1.9 � 10�11

16–23 h1 � h8 Orientation angle* Uniform – 1.732

* Mean of orientation angle is case specific. The details are provided in Section 5.

Fig. 2. Flow chart for PCFE.
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