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a b s t r a c t

This study is focused on the problem of statistical distribution of the size of rubber particles as fillers in
elastomeric composites. This distribution (average diameter of the injected particles) is assumed to be
Gaussian and uniquely defined by its mean value as well as standard deviation. The basic probabilistic
parameters of the effective elasticity tensor of the entire elastomer are under consideration by using of
the homogenization method. The basic computational ideology is based on strain deformation of the
Representative Volume Element under uniaxial and biaxial loads. This deterministic method is enriched
with the generalized stochastic perturbation technique and also by semi-analytical strategy, which are
used together with the system ABAQUS� as the Stochastic Finite Element Method (SFEM) serving for a
solution of the homogenization problem for such a composite. The basic stochastic characteristics of
the homogenized elasticity tensor and its deterministic sensitivity coefficients are verified with such
coming from analytical deterministic homogenization method extended towards random case in the
computer algebra system MAPLE�. The computational study contains additionally computational error
analysis as the homogenization problem is solved here with tetrahedral and hexahedral 3D solid finite
elements with linear as well as with parabolic shape functions and their meshes with different densities.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sensitivity analysis and uncertainty modeling of composite
materials has been an attractive and interesting area of investiga-
tions since many years [4,7,11,9] considering especially optimiza-
tion of the constituents composition, their shape and spatial
distribution [10]. One of the fundamental mathematical methods
is homogenization theory applied to replace original composite
by an equivalent and statistically homogeneous medium (not nec-
essarily isotropic). There are some relatively simple algebraic
expressions for these homogenized material characteristics avail-
able in the literature [3,17,19], some asymptotic solutions of the
so-called homogenization problem [2,21,5] with the additional
probabilistic extensions [11] and also deformation energy driven

estimates for the effective material tensors [14,15] – all with a
variety of specific applications to the engineering problems, cf.
[8]. Taking into account probabilistic modern aspects of homoge-
nization method one may find Monte-Carlo simulation [4,11,12],
Karhunen–Loeve and polynomial chaos realizations [22], lower
[20] and higher [13] order stochastic perturbation techniques as
well as some semi-analytical methodology [12]. A very interesting
study in the above context is a composite including rubber phase
(in the form of distributed spherical particles here) due to the
well-known incompressibility of this material and also to the
Mullins effect [16] or cavitation phenomenon [6]. An application
of the probabilistic methods to the homogenization problem of a
composite including polymeric matrix and rubber particles has
been successfully resolved in [14] and is available for uncertainty
in material characteristics of its both constituents. Let us note that
solutions to the mechanical problems with material uncertainty
(for example Gaussian) are widely accessible. Amore challenging
computational problem would be the shape or geometry uncer-
tainty, stochastic waviness of the boundary (interface or inter-
phase), especially in the area of composite materials (also for the
functionally graded materials – FGMs), and even stochastic geo-
metrical imperfections or support location/direction in traditional
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civil engineering structures. Numerical difficulty in this case (while
using the Finite Element Method) is a need of re-meshing of com-
putational domain exhibiting uncertain geometrical dimensions or
stochastic shape fluctuations. This must be done for both classical
Monte-Carlo simulation strategy and also for the modern fast com-
putational techniques like the stochastic perturbation method.
Considering this fact, the FEM numerical error problem associated
with the mesh generation has to be resolved and probabilistic
methodology is to be based on automatic mesh generator having
the parameters as similar as it is possible in each separate experi-
ment – to avoid mesh sensitivity of such a stochastic solution.

This work addresses the determination of the first four proba-
bilistic moments of the effective elasticity tensor components of
elastomers filled with rubber particles of Gaussian random diame-
ter. Homogenization method is based upon the deformation energy
of the Representative Volume Element (RVE) under uniaxial and
biaxial stretches [14] calculated via the Finite Element Method
(FEM), so that we are able to study the influence of the finite
element type (tetrahedral and hexahedra), order (linear and para-
bolic) and the total number on the accuracy of the deterministic
solution. Further, we apply the Response Function Method (RFM)
[13] to recover polynomial responses of homogenized tensor to
the particle diameter and to use these responses in the semi-
analytical as well as in stochastic perturbation-based tenth order
computations of basic probabilistic characteristics of this tensor.
The majority of our numerical approach is that it is dual and
enables to determine all the basic probabilistic characteristics of
the effective tensor as the explicit functions of the input parameter
uncertainty level (unlike in the Monte-Carlo simulation scheme
and also in Karhunen–Loeve or polynomial chaos expansions).
The RFM implementation significantly varies from its all previous
applications because each FEM experiment with the new modified
value of particle radius R needs the brand new mesh generation for
the entire RVE. Therefore, automatic meshing for all the finite
element types and their orders is done for all discrete values of this
R with the same parameters to avoid any mesh sensitivity in
this study (mesh adaptation is postponed in this initial study).
Moreover, it needs to be mentioned that these semi-analytical
and also perturbation-based techniques are used in conjunction
with the widely available analytical formulas for the effective
elasticity tensor (implemented in the computer algebra system
MAPLE); the remaining two methods are implemented with the
Stochastic Finite Element Method (modification of the system
ABAQUS). Computer analysis provided verifies qualitatively and
quantitatively the influence of random fluctuations of the rubber
particle size (frequently observed in engineering practice not only
in case of rubber fillers) on the basic statistics of the effective
characteristics of the elastomer and may be further extended
towards nonlinear case studies. This influence is verified also in a
deterministic way – by computations of the normalized sensitivity

coefficients of Cðeff Þ
ijkl , because first order partial derivatives are com-

puted by the way during stochastic Taylor expansion for the SFEM.

2. Mathematical model of the composite

Let us consider a statistically heterogeneous and bounded con-
tinuum X � R3 with no initial stresses and strains consisting of
spherical rubber particles statistically uniformly distributed into
the homogeneous polymeric matrix (Fig. 1). We assume a perfect
contact in-between these two constituents throughout all the
interfaces and also a lack of any contact of any two neighboring
particles. The rubber and polymer phases work both in the linear
elastic regime and their material characteristics are uniquely
defined by their Young’s moduli and Poisson’s ratios and they are
given in a deterministic manner. We assume that the filler particles

have random Gaussian size distribution defined by the expectation
and standard deviation of their radii, namely E[R] and r(R). These
operators are traditionally defined as [1,13] as

E½R� ¼
Z þ1

�1
R pRðxÞ dx; ð1Þ

and

rðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðRÞ

p
¼

Z þ1

�1
ðR� E½R�Þ2 pRðxÞ dx

� �1
2

; ð2Þ

where pRðxÞ is the probability density function assumed to have the
form

pRðxÞ ¼
1

rðRÞ
ffiffiffiffiffiffiffi
2p

p exp �ðx� E½R�Þ2
2r2ðRÞ

 !
: ð3Þ

We use further also skewness and kurtosis classically introduced in
probability theory in the following form (Monte-Carlo simulation
explores a variety of estimators, whose accuracy depends on the
few parameters):

bðRÞ ¼ l3ðRÞ
r3ðRÞ ; jðRÞ ¼ l4ðRÞ

r4ðRÞ � 3; ð4Þ

which equal both to 0 for Gaussian variables and where

lmðRÞ ¼
Z þ1

�1
ðR� E½R�Þm pRðxÞ dx; ð5Þ

denotes the mth central probabilistic moments of the variable R for
any natural numberm. The main goal of further considerations is to
determine the basic probabilistic material characteristics of the
equivalent homogenized medium and we introduce for this purpose
the Representative Volume Element (Fig. 2) consisting of a single
rubber particle within the surrounding polymeric matrix in the
form of a cube (due to the same importance of all directions related
to Cartesian coordinates which is affected by statistical isotropy of
the matrix and the whole composite themselves). We determine

Fig. 1. Idealization of the polymer with rubber particles.
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Fig. 2. The Representative Volume Element of the elastomer.
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