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a b s t r a c t

In this paper, a comprehensive review of various theories for the modeling and analysis of functionally
graded plates and shells is presented. The review is devoted to theoretical models which were developed
to predict the global responses of functionally graded plates and shells under mechanical and thermal
loadings. This review mainly focuses on the equivalent single layer theories including the classical plate
theory, first-order shear deformation theory, higher-order shear deformation theories, simplified theories
and mixed theories since they were widely used in the modeling of functionally graded plates and shells.
In addition, a thorough review of the literature related to the development of three-dimensional elasticity
solutions and a unified formulation is also presented.
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1. Introduction

Multilayered composite materials are extensively used in aero-
space, mechanics, civil engineering, nuclear and automotive due to
their outstanding features such as high ratio of stiffness- and
strength-to-weight and low maintenance cost. Conventional lami-
nated composite materials exhibit a mismatch of mechanical

properties at an interface due to bonding of two discrete materials.
As a result, stress concentration usually occurs at the interface.
This can lead to damage in the form of delamination, matrix crack-
ing and adhesive bond separation [1]. Functionally graded materi-
als (FGMs) were therefore born to overcome these issues. The FGM
is the advanced composite material which is made of two or more
constituent phases with a continuous variation of material proper-
ties from one surface to another, and thus eliminating the stress
concentration found in the conventional laminated composites.
The concept of the FGM was proposed in 1984 by Japanese
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material scientists [2]. A typical FGM is made from a mixture of a
ceramic and a metal. The history of the FGM as well as its applica-
tions can be found in the report by Jha et al. [3]. The modeling and
analysis of the FGM were also reviewed by Birman and Byrd [4].

In general, the behavior of functionally graded (FG) plates/shells
under mechanical and thermal loadings can be predicted using
either three-dimensional (3D) elasticity theory or equivalent-
single-layer (ESL) theories. The ESL models are derived from the
3D elasticity theory by making suitable assumptions on the
kinematics of deformation or a tress state through the thickness
of plates/shells [1]. These ESL theories may account for both shear
and normal deformation effects depending on the level of assump-
tions. The simplest ESL model is the classical plate theory (CPT),
also known as Kirchoff theory [5], which ignores both shear and
normal deformation effects. Thus it is only suitable for thin FG
plates/shells. The next theory in the hierarchy of ESL models is
the first-order shear deformation theory (FSDT) developed by
Mindlin [6]. The FSDT accounts for the shear deformation effect
by the way of a linear variation of in-plane displacements through
the thickness. A shear correction factor is therefore required. The
shear correction factor is difficult to determine since it depends
not only on geometric parameters but also on the loading and
boundary conditions. To avoid the use of the shear correction
factor, higher-order shear deformation theories (HSDTs) were
introduced. The HSDT can be developed by expanding the displace-
ment components in power series of the thickness coordinate. In
principle, the theories developed by this mean can be made as
accurate as desired by including a sufficient number of terms in
the series. Among the HSDTs, the third-order shear deformation
theory (TSDT) of Reddy [7] is the most widely used one due to
its simplicity and accuracy. A review of shear deformation theories
for isotropic and laminated plates was carried out by Ghugal and
Shimpi [8] and Khandan et al. [9]. A comprehensive review of vari-
ous analytical and numerical models for predicting the bending,
buckling and vibration responses of FG plates under mechanical
and thermal loadings was recently carried out by Swaminathan
et al. [10]. However, no literature has been reported for the review
of the development of various theories for the modeling and analy-
sis of FG plates/shells.

The objective of this paper is to provide a comprehensive litera-
ture review of existing theories for the modeling and analysis of FG
plates/shells with the main emphasis on the ESL models such as
the CPT, FSDT, TSDT, HSDTs, simplified theories, mixed theories.
In addition, a detailed review of the literature related to the devel-
opment of 3D elasticity solutions and a unified formulation is also
reported.

2. ESL theories

2.1. CPT model

The CPT model is based on the Kirchhoff–Love hypothesis that
the straight lines remain straight and perpendicular to the mid-
plane after deformation. These assumptions imply the vanishing
of the shear and normal strains, and consequently, neglecting the
shear and normal deformation effects. The CPT is the simplest
ESL model and it is only suitable for thin FG plates/shells where
the shear and normal deformation effects are inconsiderable.

Feldman and Aboudi [11] studied the elastic buckling of FG
plates under uniaxial compressive loading using a combination of
micromechanical and structural approaches. Governing equations
derived from the CPT were analytically solved for the buckling load
of FG plates with various boundary conditions. Javaheri and Eslami
[12,13] employed the CPT to investigate the buckling behavior of
FG plates under four types of thermal loadings [12] and compres-
sive loadings [13]. Based on the CPT, Kiani et al. [14] presented

analytical solutions for the critical buckling temperature of FG
clamped plates resting on an elastic foundation under three differ-
ent types of thermal loadings. Ghannadpour et al. [15] also exam-
ined the thermal buckling of FG plates using the CPT. However, the
buckling load was calculated using the finite strip method instead
of Navier solution in the work [12]. The buckling of FG plates sub-
jected to non-uniform compression was examined by Mahdavian
[16] using the CPT and Fourier solutions. Mohammadi et al. [17]
derived analytical solutions for the buckling load of FG plates with
two opposite edges simply supported and the other two edges hav-
ing arbitrary boundary conditions (i.e. Levy-type plate). The gov-
erning equations derived from the CPT were analytically solved
using Levy-type solution approach.

Yang and Shen [18] employed the CPT to investigate the tran-
sient response of initially stressed FG plates resting on an elastic
foundation subjected to impulsive lateral loadings. The semi-ana-
lytical differential quadrature method (DQM) and the modal super-
position approach were respectively employed to determine the
natural frequency and transient response of rectangular plates
with two opposite edges clamped and the remaining edges having
arbitrary boundary conditions. The nonlinear load–deflection and
postbuckling responses of FG plates resting on an elastic founda-
tion under in-plane and transverse loadings were investigated by
Yanga and Shen [19] using the CPT with von Karman assumptions.
A semi-analytical approach based on the DQM and Galerkin proce-
dure was used to solve the governing equations. Alinia and
Ghannadpour [20] also used the CPT with von-Karman assump-
tions to study the nonlinear responses of FG plates under trans-
verse pressure. However, they used the principle of minimum
potential energy to obtain the analytical solutions of simply sup-
ported plates.

Woo et al. [21] studied the nonlinear vibration of FG plates in
thermal environments. The nonlinear equations derived from the
CPT with von Karman assumptions were solved for FG plates with
arbitrary boundary conditions using a series method. Hu and
Zhang [22] also adopted the CPT with von Karman assumptions
to perform vibration and stability analyses of FG plates under in-
plane excitation. Free vibration of FG plates with various boundary
conditions resting on an elastic foundation was investigated by
Chakraverty and Pradhan [23] using the CPT and Rayleigh–Ritz
method. Chakraverty and Pradhan [24] improved their previous
work [23] by accounting for the effect of thermal environments.
Ruan and Wang [25] investigate the vibration and stability of mov-
ing FG skew plates using the CPT and DQM.

The CPT was also used to analyze circular plates. For example,
Ma and Wang [26] investigated the nonlinear bending and thermal
postbuckling behaviors of FG circular plates under mechanical and
thermal loadings. The governing equations derived in the frame-
work of the CPT and von Karman assumptions were numerically
solved using a shooting method. Li et al. [27] also studied the non-
linear postbuckling behavior of FG circular plate under mechanical
and thermal loadings using the CPT with von Karman assumptions.
The initial geometric imperfections of FG plates were taken into
account in their study. Allahverdizadeh et al. [28] studied the
steady-state vibration of FG circular plates in thermal environ-
ments using the CPT and a semi-analytical approach. Ghomshei
and Abbasi [29] studied the axisymmetric thermal buckling of FG
annular plates with variable thickness subjected to thermal load-
ings using the CPT and the finite element method.

In addition to FG plates, the CPT was also more preferably used
for FG shells due to its simplicity. Loy et al. [30] studied the vibra-
tion of FG cylindrical shells with simply supported boundary con-
ditions using the CPT and Rayleigh–Ritz method. A similar
approach was adopted by Arshad et al. [31] to investigate the
vibration characteristics of FG cylindrical shells under three differ-
ent types of volume fraction laws. The vibration characteristics of
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