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a b s t r a c t

This article focuses on geometrically nonlinear transient analysis of thick deep laminated composite
curved beams with generalized differential quadrature method. Generalized differential quadrature
method is coupled with the weak form of the equation of motion. Virtual work principle is used to derive
the equation of motion. Spatial derivatives in the equation of motion are expressed with generalized dif-
ferential quadrature method. Geometric nonlinearity is considered through Green–Lagrange nonlinear
strain–displacement relations that are derived using elasticity theory equations. First-order shear defor-
mation theory is used to consider the transverse shear effect. Time integration of the equation of motion
is carried out using Newmark average acceleration method. Several problems from the literature are
solved with the proposed method and results are compared.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Curved beams have wide applications in civil, mechanical and
aerospace industries as load carrying structural members or stif-
feners. Therefore, analyzes of these structures under variety of
loading conditions are important to enable safe and economical
designs. Several books were published on static, stability and
dynamic behavior of beam structures [1–7]. Finite element method
(FEM) and finite difference method (FDM) are commonly
employed numerical methods in the analyzes of beam and other
engineering problems [8–26]. However, both FEM and FDM typi-
cally use low-order schemes. Therefore, high accuracy with these
methods is usually achieved with costly calculations.

Bellman et al. [27,28] introduced differential quadrature
method (DQM) in early 1970s as an efficient alternative method,
using less grid points with acceptable accuracy. Accuracy of DQM
depends on the calculation of weight coefficients and the choice
of grid points. In the original formulation of DQM, weight coeffi-
cients was calculated by an ill-conditioned Vandermonde type
algebraic equation system limiting the use of large grid numbers.
Later, Shu [29] developed simple explicit formula to calculate
weight coefficients with arbitrary number of grid points leading
to generalized differential quadrature (GDQ) method. Early

applications of GDQ method were limited to regular domain prob-
lems. Civan and Sliepcevich [30] presented the domain decom-
position technique with regular elements to solve pool boiling
cavities. In the domain decomposition technique, problem domain
is divided into a certain number of sub-domains or elements before
the GDQ discretization is carried out on each sub-domain. GDQ
method was extended to irregular domains by Lam [31]. The
method was applied to the solution of thermal and torsional prob-
lems with geometry ranging from quadrangles to curved shapes.
Domain decomposition technique with the use of GDQ method in
each sub-domain is often referred to as the differential quadrature
element method (DQEM) [29]. More general form of the domain
decomposition technique includes the mapping technique, which
is used to map a generic element onto a simple computational ele-
ment. The general form combines the advantages of both GDQ
method and FEM is often referred to as generalized differential
quadrature element method (GDQE) [32]. Recently GDQ method
was also included in the weak form solution of differential equa-
tions in which derivatives of field variables are calculated with
GDQ method [33–36]. This method is called as weak form quadra-
ture element method [35]. More detailed and complete informa-
tion about the evolution of GDQ method and its application in
various forms in the solution of engineering problems can be found
in the related books and review articles [26,29,37–40].

Differential quadrature method and its improved forms were
also used in static, vibration and buckling analysis of beam struc-
tures. A short review on the use differential quadrature method
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in the solution of beam problems in direct or coupled forms are
given as following. He and Zhong [41] used the weak-form quadra-
ture element method for large deflection elasto-plastic analysis of
frames. Xiao and Zhong [42] performed non-linear analysis of pla-
nar frames based on geometrically exact beam theory using
quadrature element. Chen [43] solved out of-plane deflection of
non-prismatic curved beam structures by DQEM. Kang et al. [44]
analyzed the out-of-plane static behavior of a curved shaft sub-
jected to end torques, based on the curved-beam versions of the
Euler and Timoshenko beam theories. Hajianmaleki and Qatu
[45] investigated static and vibration analyzes of thick, generally
laminated composite deep curved beams with different boundary
conditions. For boundary conditions other than simply supported,
GDQ method is used to solve the equations. Bert and Kang [46]
used differential quadrature method for stress analysis of closely-
coiled helical springs. Malekzadeh [47] employed two-dimensional
layerwise-differential quadrature approach for the static analysis
of thick laminated composite circular arches. Zhang and Zhong
[48] used the weak form quadrature element method for the analy-
sis of spatial geometrically exact shear-rigid beams. Jin and Wang
[49] used the weak form quadrature element method for accurate
free vibration analysis of Euler functionally graded beams. Viola
et al. [50] coupled differential quadrature method with a domain
decomposition technique for vibration analysis of damaged circu-
lar arches. Chen [51,52] employed DQEM for in-plane and out-of-
plane vibration of curved beam structures considering the effect
of shear deformation. Torabi et al. [53] used a DQEM for transverse
vibration analysis of multiple cracked non-uniform Timoshenko
beams with general boundary conditions. Malekzadeh and
Setoodeh [54] carried out in-plane free vibration of laminated
moderately thick circular deep arches using differential quadrature
method. Malekzadeh et al. [55] used a hybrid layerwise and dif-
ferential quadrature method for in-plane free vibration of lami-
nated thick circular arches. Chen et al. [56] used elasticity
solution for free vibration of laminated beams. In this study, the
conventional state space method was combined with DQM to solve
frequency equations. Chen et al. [57] used state-space-based dif-
ferential quadrature method for free vibration analysis of generally
laminated beams. Li and Shi [58] utilized state-space-based dif-
ferential quadrature method for free vibration of a functionally
graded piezoelectric beam. Rajasekaran [59] conducted free vibra-
tion of centrifugally stiffened axially functionally graded tapered
Timoshenko beams using differential transformation and quadra-
ture methods. Karami and Malekzadeh [60] investigated in-plane
free vibration analysis of circular arches with varying cross-sec-
tions using differential quadrature method. Liu and Wu [61] inves-
tigated in-plane vibration analyses of circular arches by the GDQ
rule. Ansari et al. [62] performed nonlinear forced vibration analy-
sis of functionally graded carbon nanotube-reinforced composite
Timoshenko beams using generalized differential quadrature
method. Malekzadeh et al. [63] investigated out-of-plane free
vibration of functionally graded circular curved beams in thermal
environment using differential quadrature method. Moradi and
Moghadam [64] performed vibration analysis of cracked post-
buckled beams using differential quadrature method. Nassar
et al. [65] used differential quadrature method for vibration analy-
sis of structural elements. Shen and Zhong [66] performed static
and vibrational analysis of partially composite beams using the
weak-form quadrature element method. Karami and Malekzadeh
[67] used differential quadrature element method to study static,
vibration and buckling of beam structures. Eftekhari and Khani
[68] coupled finite element method with differential quadrature
element method to study dynamic behavior of beam under moving
load. Du et al. [69] employed GDQ method to study vibration
analysis of Euler beam. Pradhan and Murmu [70] used DQM for

thermo-mechanical vibration of functional graded and sandwich
beams.

From literature review it is seen that applications of differential
quadrature method and its improved variants to dynamic beam
problems are mostly devoted to vibration problems. Currently to
the author’s knowledge no study is available on geometrically non-
linear transient analysis of composite deep curved beams with
GDQ method. Therefore, in this study GDQ method is applied to
predict the nonlinear transient response of deep thick composite
curved beams. GDQ method is coupled with the weak form of
the equation of motion. Virtual work principle is used to derive
the equation of motion. Spatial derivatives in the equation of
motion are expressed with generalized differential quadrature
method. Green–Lagrange nonlinear strain–displacement relation-
ships are used to represent geometric nonlinearity and they are
derived for deep curved beams using elasticity theory equations.
First-order shear deformation theory (FOST) is used to take trans-
verse shear effect into account. Newmark average acceleration
method is used for the time integration of the equation of motion.
Several problems from the literature are solved with the proposed
method and results are compared.

2. Curved beam equations

2.1. Constitutive equations

Nonlinear strain–displacement relations in any three dimen-
sional elastic body in an orthogonal curvilinear coordinate system
a1, a2, f are given in Kundu et al. [71]. From Kundu et al. assuming
zero displacement in a2 direction (m = 0), nonlinear longitudinal
strain in a1 direction (e11Þ and shear strain in 1–3 plane (c13Þ are
expressed as

e11 ¼ e11 þ
1
2
ðe2

11 þ e2
31Þ

c13 ¼ e13 þ e31 þ e11e13

ð1Þ

where for constant radius of curvature e11;e31;e13 are given as

e11 ¼
1

ð1þ f=R1Þ
@u
@a1
þ w

R1

� �

e31 ¼
1

ð1þ f=R1Þ
@w
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� u
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� �

e13 ¼
@u
@f

ð2Þ

In Eq. (2) u and w indicate displacements in a1 and f direction
respectively. R1 indicates principal radius of curvature in a1 � f
plane.

Hereafter for simplicity in notation curvilinear coordinate sys-
tem of a1, a2;f is renamed as x; y; z and subscript of radius of curva-
ture R1 is dropped to be as R. Curved beam parameters are shown
in Fig. 1.

In curved beam, displacements at a general point (x; zÞ at time t
can be stated in terms of mid-plane displacements and rotation as

uðx; z; tÞ ¼ u0ðx; tÞ þ zhxðx; tÞ
wðx; z; tÞ ¼ w0ðx; tÞ

ð3Þ

where u0;w0 are mid-plane displacements and hx is the rotation
about y axes.

After substituting Eqs. (2) and (3) into Eq. (1) Green–Lagrange
nonlinear strain–displacement relationships for deep curved
beams are obtained as following:
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