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a b s t r a c t

This paper revisits the modeling of compressive failure of long fiber composite materials by considering a
multiscale finite element approach. It is well known that this failure follows from a fiber microbuckling
phenomenon. Fiber microbuckling is governed by both material and geometrical quantities: the elasto-
plastic shear behavior of the matrix and the fiber misalignment. Although all these parameters are easily
accounted by a finite element analysis at the local level, the failure is also influenced by macrostructural
quantities. That is why a multilevel finite element model (FE2) is relevant to describe the compressive
failure of composite. Furthermore, fiber local buckling leads to a loss of ellipticity of the macroscopic
model, which can be a criterion of failure.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It was long believed that the strength of long fiber composite is
lower in compression than in tension [1–3]. This was mainly
observed in pure compression tests, but flexural or buckling tests
highlighted higher strength level than in tension or pure compres-
sion [4–6]. In other words, compressive strength is not only a
material property, but it depends on structural data like specimen
size, stacking sequences of composite laminates or loading condi-
tions. In the same spirit, it was experimentally established that a
single carbon fiber embedded in an epoxy resin is able to bear
higher compressive stress than in tension [7]. One can also men-
tion that the reliability of some pure compression tests is question-
able. For instance, the GARTEUR program pointed out that
experimental strength depends strongly on the experimental set
up [8], which was corroborated by finite element studies, see for
instance [9]. In other words, the compressive strength cannot be
defined without knowledge of structural data.

Besides, it is well known that compressive strength is governed
by an instability called fiber microbuckling [10]. Fiber microbuck-
ling is a local instability that depends mainly on fiber volume frac-
tion, on nonlinearity of matrix behavior in shear and on fiber
waviness [11,12], i.e. on microstructural data. Explicit critical stres-
ses established from a kink band analysis are available [12,13],

which can be corroborated by microstructural finite element
computations, see for instance [14,15]. One can refer for instance
to [6,14–20] for a full bibliography on the topics.

Hence, a consistent model should involve macroscopic data at
the scale of the structure and microscopic data at the scale of the
fiber and of the microbuckling wavelength. The model of Drapier
et al. [21,16] is a partial answer because it accounts both for micro-
scopic and macroscopic data, but it is limited to few wavelengths
and cannot be applied directly to the whole structure. A common
criticism can be done to these various local [13–15] or semi-local
[16] modeling: they propose maximal values of the stress from
microstructural instability analyzes, but it is implicitly assumed
that this macroscopic stress is not influenced by the local instabil-
ity. Concurrent models are nowadays available, for instance the
multilevel finite element technique (FE2) also called computational
homogenization [22–24] that considers two nested continuum
models needing constitutive assumptions only at the local level.
Such a concurrent modeling will be applied in this paper.

Therefore, a consistent numerical modeling of compressive
strength has to involve a double scale analysis, by coupling instabili-
ties at microscopic level with a structural analysis. There are many
papers about instability phenomena in heterogeneous materials. In
the first one by Abeyaratne and Triantafyllidis (1984) [25] about
porous materials, it was found that the homogenized material
may loose ellipticity while the matrix remains elliptic. Other papers
[26,27] established a strong connection between macroscopic loss
of ellipticity and bifurcation buckling at the local level.
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Nezamabadi et al. [28,29] studied the compressive behavior of long
fiber composite structures in a FE2 framework and proved a similar
connection between bifurcation at the local level and maximal
macroscopic loading. Additional studies can be found in [27,30–37].

In the present paper, the same FE2 approach as in [28,29] will
be used to discuss the connection between local bifurcation, loss
of ellipticity at the macroscopic scale and the kink band stress
proposed by Budiansky and Fleck [13]. It is quite well known
that the ellipticity condition is related to the stability of a
continuous medium and is a necessary condition for the well-
posedness of a boundary value problem [38]. Loss of ellipticity
is considered as a failure criterion, see for instance [39,40] that
has been used in multi-scale frameworks [30,33,35]. Only the
classical first gradient continuum model will be considered at
the macroscopic level. This is a bit restrictive because the
account of fiber bending stiffness is necessary to predict the
microbuckling wavelength [41], which should require a model
with an internal length such as Cosserat theory [42,43] or second
order homogenization [44].

The paper is organized as follows: in Section 2, our multiscale
models [28,29] will be shortly described, the connection between
local instability and macroscopic loss of ellipticity will be explained
and two classical failure criteria will be presented. Section 3 is
devoted to numerical applications. Several multilevel numerical
applications will be discussed, especially beam bending tests that
can be considered as reference cases [6]. This permits us to revisit
the relation between microbuckling, macroscopic loss of ellipticity,
mesh sensitivity and kink band predictions, in a multiscale

framework with a single constitutive assumption at the micro-
scopic level.

2. Failure model of long fiber composites

2.1. A generic computational homogenization

Let us describe the main features of a multilevel finite element
scheme (FE2) that is also often called computational homogeniza-
tion. Such a model is described by two nested domains, each mate-
rial point belonging together to the so-called macroscopic domain
X and to a microscopic domain x, also called Representative
Volume Element (RVE) or basic cell. Here both domains are in their
reference configuration. After the finite element discretization,
each domain is associated to a mesh so that a microscopic domain
(or a microscopic mesh) is associated with each integration point
of X. According to [45], FE2 models are characterized by the lack
of constitutive law at the macroscopic level and by the localiza-
tion/homogenization relations. In the case of heterogeneous
hyperelastic materials, the multilevel model is represented in
Fig. 1 and Table 1, where all macroscopic quantities are denoted
by ð��Þ. Classically �F ¼ $�uþ I, is the macroscopic deformation ten-
sor, �u denotes the macroscopic displacement field and �P is the first
macroscopic Piola–Kirchhoff stress tensor. The corresponding
quantities at the microscopic level are denoted as F;u and P , while
c and S represent the Green–Lagrange strain and the second Piola–
Kirchhoff stress tensor.
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Fig. 1. Computational homogenization scheme.
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