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a b s t r a c t

The real-time reconstruction of the displacement and stress fields from discrete-location strain measure-
ments is a fundamental feature for monitoring systems, which is generally referred to as shape- and
stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology
that is ideally suited for applications to laminated composite and sandwich structures. The new approach
employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory
(RZT) as the underlying plate theory. Using a C0-discretization, a three-node inverse plate finite element
is formulated. The element formulation enables robust and efficient modeling of plate structures instru-
mented with strain sensors that have arbitrary positions. The methodology leads to a set of linear alge-
braic equations that are solved efficiently for the unknown nodal displacements. These displacements are
then used at the finite element level to compute full-field strains and stresses that may be in turn used to
assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demon-
strate the unique capability of this new formulation for shape- and stress-sensing.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of composite and sandwich material systems as pri-
mary structures grew significantly during the past few decades
with applications in civil and military aircrafts, launch vehicles,
wind turbine blades and marine structures [1–3]. Despite their
numerous advantages, composite structures may experience such
modes of failure as delamination, face/core debond and impact
damage [4], which can affect their load carrying capabilities.
Since these types of damage are often barely visible (or even
non visible) and hard to detect [5], the development of efficient
and reliable integrated Structural Health monitoring systems that
can predict possible damages become an issue of primary
importance.

An efficient way to monitor a structural system is to use a net-
work of in-situ strain sensors and measured strains to extrapolate
the full-field displacements and stresses, thus enabling real-time
damage predictions by means of appropriate failure criteria. This
technology is commonly referred to as shape- and stress-sensing.
Furthermore, the real-time evaluation of the deformed shape is

also a vital technology for the development of composite smart
structures such those of morphed capability and those with embed-
ded conformal antennas that require real-time shape sensing to
provide feedback for their actuation and control systems [6,7].

For composite and sandwich structures, the use of embedded
optical-fiber networks represents an attractive technology for dis-
crete-location strain measurements that can give rise to a large
amount of strain data. Particularly, Fiber Bragg Grating (FBG) strain
sensors are widely used due to their lightness, accuracy and ease to
embed. Moreover, significant technological progresses have been
made in embedding FBG sensors within composite and sandwich
structures during the manufacturing process [8–12], thus making
FBG sensors suitable for usage in operational conditions.

Various shape-sensing strategies have been explored in the
literature for both plate and shell or frame structures. In a series
of works [13–16], the measured strains are fitted by using an a
priori set of basis functions and proper weights. Strain–displace-
ment relationships are then used to evaluate the displacement field.
Both global or piece-wise continuous basis functions were
employed. In [15] Fiber-Bragg Grating (FBG) measured strains were
fitted with a cubic polynomial. The strain field was then integrated
to obtain plate deflection according to classical bending assump-
tions. Since the aforementioned methods make use of the Euler–
Bernoulli beam hypotheses or the Kirchhoff plate hypotheses to
define the strain–displacement relationships, they can only be
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applied to slender beams or thin plates. Todd and Vohra [16]
showed how the shear effect can be included for the beam problem
without requiring an independent measure of the shear strain.

Foss and Haugse [17], and Pisoni et al. [18] independently
developed a modal method which employs normal modes to
reconstruct the structural deformed shape. The unknown weights
to be assigned to each normal mode are determinsed using
strain–displacement relationship and measured surface strains.
In [17,18] the mode shapes were experimentally estimated. In
other works based on the modal method, analytical [19] or FEM
generated mode shapes [20–24] were adopted. Although the
experimental evaluation of the mode shapes can be onerous, it
has the advantage of not requiring any knowledge of the material
properties. Lively et al. [23] showed that when only lower natural
modes are used the results can be inaccurate due to the aliasing of
higher structural modes. In [24] it is pointed out that for high-
frequency excitations a large number of natural vibration modes
is needed to improve the accuracy, thus requiring a computation-
ally intensive eigenvalue analysis and a large number of strain
measurements.

To reconstruct the deformed shape of shear-deformable plate
and shell structures, Tessler and Spangler [25,26] developed an
inverse Finite Element Method (iFEM). The proposed methodology
employs a weighted-least-square variational principle and
accounts for the complete set of First-order Shear Deformation
Theory (FSDT) modes. Since only strain–displacement relations
are used in the formulation, both the static and the dynamic
responses can be reconstructed without any a priori knowledge of
material, inertial, loading, or damping structural properties. By
using C0-continuous kinematic approximations, they developed a
three-node inverse shell element called iMIN3 [25]. The variational
principle of the iFEM was specialized by Gherlone et al. [27] to the
shape sensing of shear-deformable beam and frame structures.
Several numerical and experimental tests showed that iFEM is ver-
satile and robust [27–29]. A similar approach was used in [30],
where compatibility between analytical and measured bending
curvatures of the Kirchhoff plate theory is enforced in a
weighted-least-squares sense. The weighting coefficients were
adjusted in order to account for the inherent errors in the measured
strain data. The weights were computed for a given data-ac-
quisition apparatus, load case and test article, with the consequent
difficulties in generalizing the procedure.

All the existing shape-sensing methods adopt First-order Shear
Deformation Theory (FSDT) and have been exclusively applied to
homogeneous or nearly-homogeneous beams or plates. Although
generally regarded as an accurate theory, FSDT may lead to some-
what inadequate predictions when applied to relatively thick com-
posite and sandwich structures. For such structures, higher-order
equivalent-single-layer theories [31] provide improved predic-
tions, specifically for the global response quantities such as deflec-
tion and natural frequencies; nevertheless, even these theories fail
to predict through-the-thickness distributions of displacements,
strains, and stresses with sufficient accuracy. Layer-wise theories
[32] usually lead to highly accurate response predictions; however,
these are obtained at the expense of computational efficiency and
modeling complexity, especially for multilayered structures, since
the number of unknowns depends on the number of material
layers. A good compromise between adequate accuracy and com-
putational efficiency are the so-called zigzag theories, first devel-
oped by Di Sciuva [33–41]. For these theories the number of
kinematic variables is the same regardless of the number of mate-
rial layers. Furthermore, the zigzag displacement field is able to
model the cross-sectional distortion that is typical of multilayered
composite and sandwich structures. Recently, a Refined Zigzag
Theory has been developed [42,43] which allows more accurate
predictions of the response quantities, including the transverse

shear stresses, and a more efficient computation by means of C0-
continuous finite elements (instead of C1-continuous finite ele-
ments required by the previous zigzag theories).

In this paper, the Tessler–Spangler [25,26] inverse Finite
Element Method (iFEM) is reformulated to include the kinematic
assumptions of the Refined Zigzag Theory (RZT) [42,43]. The new
formulation is thus intended for applications dealing with
multilayered composite and sandwich structures possessing a high
degree of anisotropy and heterogeneity. The variational principle is
then discretized using a C0-continuous three-node inverse plate
finite element. Numerical results are presented for moderately
thick sandwich laminates subjected to various boundary and load-
ing conditions. Finally, superior stress-sensing capabilities of the
present formulation are demonstrated for a select set of challeng-
ing material systems. This paper is an extended and enhanced ver-
sion of the work presented in [44], including also new numerical
results investigating influence of the plate slenderness and the
core-to-face thickness ratio, and the sensitivity to input data.

2. Kinematic assumptions of the Refined Zigzag Theory for
plates

Herein the kinematic assumptions of the Refined Zigzag Theory
(RZT) for plates are briefly reviewed. In particular, the strain field is
formally re-written in order to define the strain measures to be
used in the iFEM variational formulation (see Section 3).

Consider a plate of thickness 2h made of N perfectly bonded
orthotropic material layers (see Fig. 1); the superscript ðkÞ denotes
the kth layer. The plate is referred to a Cartesian coordinate system
ðx1; x2; zÞ where ðx1; x2Þ are the in-plane coordinates and z is the
thickness coordinate that ranges from �h to h, with z ¼ 0 identify-
ing the mid-plane and z(j) identifying the jth interface (see Fig. 2).

The displacement field of RZT for plates is [43]

uðkÞ1 ðx1; x2; zÞ � uðx1; x2Þ þ zh1ðx1; x2Þ þ /ðkÞ1 ðzÞw1ðx1; x2Þ
uðkÞ2 ðx1; x2; zÞ � vðx1; x2Þ þ zh2ðx1; x2Þ þ /ðkÞ2 ðzÞw2ðx1; x2Þ
uzðx1; x2; zÞ � wðx1; x2Þ

ð1Þ

where uðkÞ1 and uðkÞ2 are the in-plane displacements and uz is the
transverse displacement. RZT has seven kinematic variables,
u ¼ fu;v;w; h1; h2;w1;w2g

T . The same definition of the FSDT yields
for the first five components of the vector u; namely, u; v , and w
are the uniform displacement components along the x1; x2, and z-
axis respectively, whereas h1 and h2 are the average rotations of
the transverse normal around the positive x2-axis and the negative
x1-axis, respectively. The RZT variables waða ¼ 1;2Þ are the ampli-
tudes of the zigzag contributions to the in-plane displacement in
the xa-directions (see Fig. 1). The zigzag terms /ðkÞa waða ¼ 1;2Þ in

Eq. (1) describe the C0-continuous cross-sectional distortions that
are typical of multilayer laminates. The zigzag functions, /ðkÞa ðzÞ,
have units of length and are piecewise linear, C0-continuous func-
tions of the thickness coordinate and of the transverse shear moduli
of the laminate layers (see [43]).
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Fig. 1. Plate notation.
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