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a b s t r a c t

In this paper, the nonlinear bending and postbuckling characteristics of Mindlin rectangular microplates
made of functionally graded (FG) materials are studied based on the modified couple stress theory
(MCST). This theory facilitates considering size dependency through introducing material length scale
parameters. The FG microplates, whose volume fraction is expressed by a power law function, are
considered to be made of a mixture of metals and ceramics. By considering the physical neutral plane
position, the stretching–bending coupling is eliminated in both nonlinear governing equations and
boundary conditions of FG microplates. With the aid of MCST and the principle of virtual work, the
governing equations and corresponding boundary conditions are derived. Then, the obtained governing
equations and boundary conditions are discretized through the generalized differential quadrature
(GDQ) method. Finally, the resulting nonlinear parameterized equations are solved by the pseudo-
arclength continuation technique. The effects of material gradient index, length scale parameter,
length-to-thickness ratio, and boundary conditions on the nonlinear bending and postbuckling responses
of FG microplates are investigated.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Beams and plates at the scale of microns and sub-microns are
among the chief structures extensively used in micro/nano-
electro-mechanical systems (MEMS/NEMS) and atomic force
microscopes [1–5]. Some experiments have demonstrably shown
the size-dependent torsion and bending behaviors of microbeams
[6–9] and it has been found that size-dependent behavior is an
inherent property that has considerable effects when the thickness
of beam is comparable to the internal material length scale
parameter.

Since the classical elasticity theory fails to consider scale depen-
dency, several attempts have been made to develop unconven-
tional theories capable of accommodating the size dependence of
micro- and nanostructures. In this respect, one can mention the
following non-classical continuum theories: the nonlocal elasticity,
the couple stress elasticity, the strain gradient elasticity and the
surface elasticity theories [10–13]. These theories have been
broadly employed to examine the mechanical responses of micro-

and nanostructures [14–21]. The couple stress theory describes the
microstructure-dependent size effects by introducing two material
length scale parameters [10,22]. This theory was then modified by
Yang et al. [23] and named the modified couple stress theory
(MCST). They precipitated incorporating the size effect by con-
sidering only one material length scale parameter in addition to
classical material constants. MCST was used to develop several
size-dependent models such as non-classical Euler–Bernoulli
microbeam, Timoshenko microbeam and Kirchhoff microplate
models. Some investigators have presented analytical solutions
for the static and dynamic behaviors of size-dependent micro-
plates based on MCST in the framework of Kirchhoff microplate
model [24–26]. Also, Ke et al. [27] studied the free vibration behav-
ior of Mindlin microplates based on MCST.

The superlative characteristics of FG materials have motivated
researchers to employ them in MEMS and NEMS to acquire high
sensitivity and desired performance. Recently, MCST has been
employed to develop the size-dependent FG microbeam models.
In this direction, several investigations on the nonlinear vibration,
static buckling, bending and dynamic stability of FG Euler–
Bernoulli and Timoshenko microbeams have been conducted
[28–31]. In the aforementioned studies, it is considered that the
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undeformed plane (the physical neutral plane) is located at the
physical middle plane. Since the material properties of FG micro-
and nanostructures in the thickness direction are inhomogeneous,
their physical neutral plane is not identical to their geometric
middle plane. This issue has attracted the attention of some
researchers. For example, Asghari and his associates [32] studied
the bending and free vibration of FG microbeams by considering
the physical neutral plane. The nonlocal bending, buckling and
vibration problems of FG nanobeams are addressed by Eltaher
et al. [33] based on the physical neutral plane concept. Ke et al.
[34] investigated the axisymmetric postbuckling of FG annular
microplates by taking the physical neutral plane position into
account. The results of these works revealed that considering
physical neutral plane can remove the stretching–bending
coupling in FG structures.

It should be noted that in the case of FG microplates with sim-
ply-supported boundary conditions under in-plane edge compres-
sive loads or temperature change, the bifurcation buckling does not
happen because of the stretching–bending coupling effect [35,36].
Hence, when there is no compressive load applied on the physical
neutral surface, the bifurcation solutions for unsymmetric simply-
supported FG microplates under the in-plane compression and
temperature change may be wrong from the physical standpoint.
Motivated by this consideration, it is supposed that the compres-
sive in-plane loads are acted on the physical neutral surface of
FG microplates. However, it should be remarked that in the case
of clamped FG microplates, the buckling loads are present and
the hypothesis of mid-plane symmetric structure is not required.

This paper investigates the postbuckling of rectangular FG
microplates considering the physical neutral plane position based
on MCST. To accomplish this aim, first, a size-dependent Mindlin
plate model capable of considering small scale effects is developed
for FG rectangular microplates including the von Kármán geomet-
ric nonlinearity. The volume fraction of FG materials is expressed
by a power law function. By considering the physical neutral plane
position, the stretching–bending coupling is eliminated in FG
microplates. The principle of virtual work is used to derive the gov-
erning equations and associated boundary conditions. Afterwards,
the obtained nonlinear governing stability equations are dis-
cretized through the GDQ method, and then solved via the
pseudo-arclength continuation technique. The effects of important
parameters including material gradient index, length scale
parameter, length-to-thickness ratio, and boundary conditions on
the nonlinear bending and postbuckling analysis of FG microplates
are investigated.

2. Modified couple stress theory

According to MCST [23], the stored strain energy Um in a contin-
uum made of a linear elastic material occupying region X with
infinitesimal deflections can be written as

Um ¼
1
2

Z
X

rijeij þms
ijv

s
ij

� �
dv ð1Þ

in which the components of strain tensor and the symmetric curva-
ture tensor symbolized by eij, and vs

ij, respectively, are given as

eij ¼
1
2

ui;j þ uj;i þ ui;juj;i
� �

; ð2aÞ

vs
ij ¼

1
2

hi;j þ hj;i
� �

; hi ¼
1
2

curl uð Þð Þi: ð2bÞ

where ui stands for the components of displacement vector u and hi

shows the infinitesimal rotation vector h.

For a linear isotropic elastic material, the constitutive equation
can be characterized in terms of the kinematic parameters effective
on the strain energy density as [37,38]

rij ¼ ktr eð Þdij þ 2leij; ms
ij ¼ 2ll2vs

ij: ð3Þ

The parameters rij and ms
ij are known as the components of the

symmetric part of stress tensor r and the deviatoric part of the cou-
ple stress tensor ms, respectively; the symbol d refers to the
Kronecker delta and l is the material length scale parameter. Also,
the parameters k and l appearing in the constitutive equation of
the classical stress r represent two Lamé’s constants and are
defined for the plane stress state as

k ¼ Em
1� m2 ; l ¼ E

2 1þ mð Þ : ð4Þ

in which E and m are Young’s modulus and Poisson’s ratio,
respectively.

3. Governing equations and corresponding boundary conditions

An FG rectangular microplate made of a mixture of ceramics
and metals with length a, width b and thickness h subjected to
the in-plane forces N0

xx; N0
yy and N0

xy and applied transverse load
Q0 is considered. The microplate is assumed to be metal-rich and
ceramic-rich at the bottom surface ðz ¼ �h=2Þ and top surface
ðz ¼ h=2Þ, respectively. Also, the effective material properties of
FG microplate including Young’s modulus E and Poisson’s ratio m
can be estimated as

EðzÞ ¼ EcVc þ EmVm; mðzÞ ¼ mcVc þ mmVm: ð5Þ

where the subscripts m and c represents metal and ceramic phases,
respectively; V denotes the volume fraction of material phases.

Among all functions available for expressing the volume frac-
tion variation of microplate’s components, the power law function
is employed herein as follows [39]

VcðzÞ ¼
1
2
þ z

h

� �k

; VmðzÞ ¼ 1� 1
2
þ z

h

� �k

ð6Þ

where k is the volume fraction exponent or material gradient index.
Based on the first-order shear deformation plate theory, the in-
plane displacements can be characterized as the linear functions
of plate thickness, and the transverse deflection is considered to
be constant through the plate thickness. Therefore, the displace-
ment field in a Mindlin plate can be described as

ux¼uðx;yÞ��zwxðx;yÞ; uy ¼vðx;yÞ��zwyðx;yÞ; uz¼wðx;yÞ: ð7Þ

in which uðx; yÞ and vðx; yÞ are mid-plane displacements, and wðx; yÞ
represents the lateral deflection of microplate; and wx and wy denote
the rotations of the transverse normal about y- and x-axis, respec-
tively. Moreover, one has �z ¼ z� z0 in which z0 stands for the z-coor-
dinate of the physical neutral plane that can be calculated as

z0 ¼
R h=2
�h=2 kþ 2lð Þzdz=

R h=2
�h=2 kþ 2lð Þdz. This means that the neutral

axial is dependent on the material distribution in the thickness direc-
tion. Accordingly, for inhomogeneous FG microplates, the physical
neutral plane is not equal to the geometric middle plane. By taking
the physical neutral surface as the reference plane, it is possible to
ignore the stretching–bending coupling stiffness component.

Based on the von Kármán hypothesis and by inserting Eq. (7)
into (2a), the nonzero components of strain–displacement equa-
tions are obtained as

exx ¼ /0 � �z/1; eyy ¼ u0 � �zu1; exy ¼ eyx ¼
1
2

j0 � �zj1ð Þ;

exz ¼ ezx ¼
1
2
c1; eyz ¼ ezy ¼

1
2
c2:

ð8Þ
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