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ABSTRACT

Numerical modeling with treatment of trimmed objects such as internal cutouts in terms of NURBS-
based isogeometric analysis presents several challenges, primarily due to the tensor product of the
NURBS basis functions. In this paper we develop a new simple and effective isogeometric analysis for
modeling buckling and free vibration problems of thin laminated composite plates with cutouts. We
adopt the classical plate theory for the present formulation. The new approach can nicely overcome
the drawbacks in modeling complex geometries with multiple-patches as the level sets are used to
describe the internal cutouts; while the numerical integration is used only inside the physical domain.
Numerical examples with complicated shapes are considered and analyzed to show the influences of cut-
out geometry, fiber orientation, boundary conditions, etc. on natural frequency and buckling behaviors of
laminated plates. The results are compared with reference solutions showing a high accuracy of the pro-

posed method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to the advantages like light weight, longer life, and fati-
gue endurance etc., thin laminated composites have been widely
used as components in engineering structures. Due to a large
requirement of laminates for a variety of engineering applications,
thin plate structures with arbitrary cutouts are inevitable. The
presence of cutouts can significantly affect the dynamic and buck-
ling behaviors of structures in particular, and their performance in
general. Studies on the analysis of eigenvalues and stability of thin
laminates with cutout are of great importance for many practical
applications including airplane wing, fuselage and ribs.

Because of the complexity of the laminated composites with
cutouts, numerical methods are extensively used in this subject.
Studies on the vibration and buckling problems of thin laminated
composite plates with cutouts have performed using different
numerical approaches including finite element method (FEM)
[1-4], Rayleigh-Ritz method [5], meshfree method [6], finite strip
method [7,8] and extended finite element method (XFEM) [9]. In
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recent years, the isogeometric analysis (IGA) [10,11] has intro-
duced and become popular since it inherently owns many great
advantages including exact geometry representation, higher-order
continuity, simple mesh refinement, and avoiding the traditional
mesh generation procedure. Some insights into mathematical
properties [12,13], integration method [14,15] and splines tech-
niques [16] have been studied. The inherent characteristics of
IGA make it superior to the classical FEM in many aspects [10].
The IGA has successfully applied to many engineering problems
including plates and shells [17-20], fluid mechanics [21], fluid-
structure interaction [22], damage and fracture mechanics [23],
contact mechanics [24], unsaturated flow problem in porous media
[25], and structural shape optimization [26].

Interesting features of exact geometry representation and high-
order smoothness of NURBS basis functions have attractive for the

analysis of plates and shells problems. The C' continuity require-
ment of classical plate theory is easily handled without additional
efforts due to the high-order continuity of NURBS basis functions.
Based on classical plate theory, a direct construction of rotation-
free isogeometric shell was initially introduced in [27], and fully
developed for multiple NURBS patches using the bending strip
method by Kiendl [28]. Later, the rotation-free isogeometric shell
element was extended to large deformation [29], free vibration
and buckling analysis of laminated plates [30] and functional
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graded plates [31], cloth simulation [32]. Investigated in the pre-
vious works, it exhibits that the rotation-free isogeometric plate/
shell elements can attain very good accuracy and are efficient for
plate and shell structures. However, most of the applications are
limited to single-patch structures and simply geometry. For com-
plex geometries like structure with cutouts, the trimmed NURBS
surface is useful. Shojaee et al. [30,33] artificially divided the
square plate with a hole of complicated shape into several
NURBS patches and then applied the bending strip method to

maintain C' continuity between patches. This approach however
is found to be ineffective and not straightforward to unify design
and analysis. To deal with the trimmed NURBS surfaces, Schmidt
et al. [34] alternatively developed a local reconstruction technique
to rebuild trimmed elements with separate patches in which the
geometric errors and loss of the higher-order continuity along
the interior and limited to single trimming curves are introduced.
Nevertheless, numerical modeling with treatment of trimmed
objects such as internal cutouts in terms of NURBS-based IGA has
some drawbacks primarily because of the tensor product induced
by the NURBS basis. The existing geometric models with trimmed
NURBS surface thus remain a challenging problem in com-
putational mechanics community.

In order to conveniently deal with complex geometry problems,
the IGA on one hand has combined with the enrichment method to
form the so-called XIGA [35], and on the other hand that combines
with the finite cell method (FCM) resulting the finite cell extension
to isogeometric analysis [36,37], in which the level sets are used to
define the geometry of the computational domain. In this work,
the level sets are used to describe the internal cutouts and the
numerical integration is used only inside the physical domain. One
must be noted that most of the preceding studies using IGA with
level sets were developed for elastoelastic problems, but have not
accounted yet for dynamic and buckling problems of thin laminated
composite structures with complicated shapes. The objective of this
paper is to fill such a gap which essentially devotes to modeling
dynamic and buckling of complicated thin laminated structures by
a new cutout IGA approach. This new simple and effective IGA is
found accurately and effectively, which will be demonstrated later
in the numerical results, in modeling complicated thin laminated
composites with cutouts based on the classical plate theory.

The rest of this paper is structured as follows: fundamental of
NURBS basis functions and their derivatives are presented in
Section 2. In Section 3, the IGA discrete equations based on classi-
cal plate theory and level sets for thin laminated composites with
cutouts are derived. Numerical examples with complicated shapes
for the free vibration problems of thin laminated structures with
cutouts are presented in the next section to show the accuracy of
the proposed approach. Similarly, buckling results for thin lami-
nates with cutouts are presented in Section 5. We end with some
conclusions drawn from the study in Section 6.

2. NURBS basis functions and their derivatives

The NURBS basis functions and their derivatives are briefly
introduced in this section. For details, curious readers may refer
to [10,38].

The NURBS is known as a generalization of B-splines. A B-spline
is defined on a one dimensional parametric space ¢ € [0, 1], by a set

of non-decreasing numbers called knot vector k(&)=
{&6=0,....&,...,éupir = 1}T(5,. < &i41), and a set of control points
P;,i=1,...,n, where n and p is the number of splines basis func-

tions and the order of splines basis functions, respectively. The
non-zeros knot span [&;, &) is defined as element in IGA. A knot
vector k(¢) is called an open knot vector when the two ends of
the knot are repeated p + 1 times.

With a given knot vector k(¢), the B-spline basis function, writ-
ten as Nj, (&), is defined recursively as follows [38]:

1 if&<é<éy
0 otherwise

Nio(¢) = { for p =0, (1)

and

FELTE N (@) for p 1.
Citp+1 — Git1
(2)

A quadratic B-spline basis functions example is presented in Fig. 1
using the following knot vector

k(&) = {&1,&,... &, &0} ={0,0,0,0.2,04,06,08,1,1,1}'  (3)

It can be observed that a B-Spline basis function is C* continu-
ous inside a knot span, i.e., between two distinct knots, and cr!
continuous at a single knot. This character satisfies the require-
ment of the classical plate theory.

The NURBS basis function R;,(¢) in the framework of partition of
unity is constructed by a weighted average of the B-spline basis
functions [38] as follows:

. Nip(Ow;
Rip(S) N REm (4)
where w; is the ith weight; the NURBS basis function is degenerate
into B-spline basis function for w; = 1.

Similarly, the bivariate NURBS basis function for a NURBS sur-
face is given by

on_ $—6 .
Nip(&) = Til&Nt‘,p—l(g)

__ Nip@©ONigmwis _ Nip(ENjq(n)wij
S Nip(ONjg (M wig W(En)

where w;; represents the 2D weight; N;,(#) is the B-spline basis of
order p defined on the knot vector k(1), followed the recursive for-
mula shown in Eqgs. (1) and (2); W(xi,n) = 321, 7% Nip(E)Nj g ()W
is the weighting function for a NURBS surface.

It should be stated here that the NURBS basis functions own the
same properties as B-splines. By using the NURBS basis functions, a
NURBS surface of order p in the ¢ direction and order g in the 7
direction can be constructed as follows:

R (¢ m) )

S m) =YY RAE Py, (6)

i=1 j=1

where P;; represents the coordinates of control points in two
dimensions.
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Fig. 1. Quadratic B-spline basis functions.
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