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a b s t r a c t

In this paper the Verchery’s polar method is extended to the conceptual framework of the First-order
Shear Deformation Theory (FSDT) of laminates. It will be proved that the number of independent tensor
invariants characterising the laminate constitutive behaviour remains unchanged when passing from the
context of the Classical Laminate Theory (CLT) to that of the FSDT. Moreover, it will also be shown that,
depending on the considered formulation, the elastic symmetries of the laminate shear stiffness matrix
depend upon those of membrane and bending stiffness matrices. As a consequence of these results a uni-
fied formulation for the problem of designing the laminate elastic symmetries in the context of the FSDT
is proposed. The optimum solutions are found within the framework of the polar-genetic approach, since
the objective function is written in terms of the laminate polar parameters, while a genetic algorithm is
used as a numerical tool for the solution search. In order to support the theoretical results, and also to
prove the effectiveness of the proposed approach, some novel and meaningful numerical examples are
discussed in the paper.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of designing a composite structure is quite
cumbersome and can be considered as a multi-scale design prob-
lem. The complexity of the design process is actually due to two
intrinsic properties of composite materials, i.e. the heterogeneity
and the anisotropy. Although the heterogeneity gets involved
mainly at the micro-scale (i.e. the scale of constitutive ‘‘phases’’,
namely fibres and matrix), conversely the anisotropy intervenes
at both meso-scale (that of the constitutive lamina) and
macro-scale (that of the laminate). It is well known that the mate-
rial properties (and more generally the mechanical response) of an
anisotropic continuum depend upon the direction. A consequence
of anisotropy consists in the fact that the mechanical response of
the material depends upon a considerable number of parameters
(i.e. 21 for a general triclinic material, 13 for the monoclinic case,
nine for the orthotropic one, five for the transverse isotropic case
and two for an isotropic material).

Normally the Cartesian representation of tensors is employed to
describe the behaviour of an anisotropic material in terms of
Young’s moduli, shear moduli, Poisson’s ratios, Chentsov’s ratios

and mutual influence ratios, see [1]. While on one hand the
Cartesian representation seems to be the ‘‘most natural’’ represen-
tation to describe the anisotropy, on the other hand it shows a
major drawback: the above material parameters depend upon
the coordinate system chosen for characterising the mechanical
response of the continuum. As a consequence, the anisotropy of
the material is described by a set of parameters which are not (ten-
sor) invariant quantities and that represent the response of the
material only in a particular frame and not in a general one.

Several alternative analytical representations can be found in
literature. Some of them rely on the use of tensor invariants which
allow for describing the mechanical behaviour of an anisotropic
continuum through intrinsic material quantities. Of course, such
representations do not imply a reduction in the number of parame-
ters needed to fully characterise the material behaviour.
Nevertheless, since these intrinsic material quantities are tensor
invariants on one hand they allow to describe the mechanical
response of the material regardless to the considered reference
frame and on the other hand they let to better highlight some
physical aspects that cannot be easily caught when using the
Cartesian representation.

In the framework of the design of composite materials several
analytical representations of (plane) anisotropy were developed
in the past and among them the most commonly employed is that
introduced by Tsai and Pagano [2]. In the context of this approach
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they introduce seven parameters Ui; ði ¼ 1; . . . ;7Þ which are
expressed in terms of the six independent Cartesian components
of a fourth-rank elasticity-like plane tensor (i.e. a tensor having
both major and minor symmetries) written in the local frame
C ¼ O; x1; x2; x3f g:

U1 ¼
3L1111 þ 2L1122 þ 3L2222 þ 4L1212

8
;

U2 ¼
L1111 � L2222

2
;

U3 ¼
L1111 � 2L1122 þ L2222 � 4L1212

8
;

U4 ¼
L1111 þ 6L1122 þ L2222 � 4L1212

8
;

U5 ¼
L1111 � 2L1122 þ L2222 þ 4L1212

8
;

U6 ¼
L1112 þ L1222

2
;

U7 ¼
L1112 � L1222

2
:

ð1Þ

The main drawbacks of this representation are basically three:
firstly not all parameters Ui are tensor invariants, secondly they
do not have a simple and immediate physical meaning and, finally,

they are not all independent. Indeed, U5 can be expressed in terms
of U1 and U4 as:

U5 ¼
U1 � U4ð Þ

2
: ð2Þ

In 1979 Verchery [3] introduced the polar method for representing
fourth-rank elasticity-like plane tensors. This representation has
been enriched and deeply studied later by Vannucci and his co-
workers [4–8]. The polar method relies upon a complex variable
transformation by taking inspiration from a classical technique
often employed in analytical mechanics, see for instance the works
of Kolosov [9] and Green and Zerna [10]. As it will be briefly
described in Section 2, the main advantages of the polar formalism
are at least three: (a) it is a representation of anisotropy which is
based on tensor invariants, (b) such invariants have an immediate
physical meaning which is linked to the different (elastic) symme-
tries of the tensor and (c) the change of reference frame can be
expressed in a straightforward way.

Concerning the problem of the design of a composite structure,
the polar method has been applied, up to now, only in the frame-
work of the Classical Laminate Theory (CLT) for different real-life
engineering applications, see [11–17]. Nevertheless, the results
obtained by using the polar method in the context of the CLT are
not sufficiently accurate for those applications involving

Notations

CLT Classical Laminate Theory
FSDT First-order Shear Deformation Theory
GA genetic algorithm
C ¼ O; x1; x2; x3f g local (or material) frame of the elementary ply
CI ¼ O; x; y; z ¼ x3f g global frame of the laminate
h rotation angle
11;22;33;32;31;21f g () 1;2;3;4;5;6f g correspondence be-

tween tensor and Voigt’s (matrix) notation for the in-
dexes of tensors (local frame)

xx; yy; zz; zy; zx; yxf g () x; y; z; q; r; sf g correspondence between
tensor and Voigt’s (matrix) notation for the indexes of
tensors (global frame)

Zij; ði; j ¼ 1;2 or i; j ¼ x; yÞ second-rank plane tensor using tensor
notation (local and global frame)

Lijkl; ði; j; k; l ¼ 1;2 or i; j; k; l ¼ x; yÞ fourth-rank plane tensor
using tensor notation (local and global frame)

Ui ði ¼ 1; . . . ;7Þ parameters of Tsai and Pagano
½Q � 3� 3 in-plane reduced stiffness matrix of the con-

stitutive lamina (Voigt’s notation)
½ bQ � 2� 2 out-of-plane reduced stiffness matrix of the con-

stitutive lamina (Voigt’s notation)
T0; T1;R0;R1;U0;U1 polar parameters of a fourth-rank plane ten-

sor (also used for the lamina in-plane reduced stiffness
matrix ½Q �)

T;R;U polar parameters of a second-rank plane tensor (also
used for the lamina out-of-plane reduced stiffness ma-
trix ½ bQ �)

Nf g 3� 1 vector of membrane forces (per unit length),
Voigt’s notation

Mf g 3� 1 vector of bending moments (per unit length),
Voigt’s notation

Ff g 2� 1 vector of shear forces (per unit length), Voigt’s no-
tation

e0f g 3� 1 vector of in-plane strains of the laminate middle
plane, Voigt’s notation

v0

� �
3� 1 vector of curvatures of the laminate middle plane,
Voigt’s notation

c0

� �
2� 1 vector of the out-of-plane shear strains of the
laminate middle plane, Voigt’s notation

½A�; ½B�; ½D� 3� 3 matrices of laminate membrane, membrane/
bending coupling and bending stiffness, respectively
(Voigt’s notation)

½A��; ½B��; ½D�� 3� 3 matrices of laminate homogenised mem-
brane, membrane/bending coupling and bending stiff-
ness, respectively (Voigt’s notation)

½H� 2� 2 matrix of laminate out-of-plane shear stiffness,
(Voigt’s notation)

½H�� 2� 2 matrix of laminate homogenised out-of-plane
shear stiffness, (Voigt’s notation)

½C�� 3� 3 laminate homogeneity matrix
T0A� ; T1A� ;R0A� ;R1A� ;U0A� ;U1A� polar parameters of ½A��
T0B� ; T1B� ;R0B� ;R1B� ;U0B� ;U1B� polar parameters of ½B��
T0D� ; T1D� ;R0D� ;R1D� ;U0D� ;U1D� polar parameters of ½D��
TH� ;RH� ;UH� polar parameters of ½H��
Ei; ði ¼ 1;2;3Þ Young’s moduli of the constitutive lamina

(material frame)
Gij; ði; j ¼ 1;2;3Þ shear moduli of the constitutive lamina

(material frame)
mij; ði; j ¼ 1;2;3Þ Poisson’s ratios of the constitutive lamina

(material frame)
tply thickness of the constitutive lamina
n number of layers
dkf g ðk ¼ 1; . . . ;nÞ vector of the layers orientation angles

h overall thickness of the laminate
W overall objective function for the problem of designing

the elastic symmetries of the laminate
ff g 21� 1 vector of partial objective functions
W½ � 21� 21 positive semi-definite diagonal weight matrixcR0 A� ;

cR1 A� ;
cU0 A� ;

cU1 A� imposed values for the polar parameters of
matrix ½A��cR0 D� ;

cR1 D� ; cU0 D� ; cU1 D� imposed values for the polar parameters of
matrix ½D��

Npop number of populations
Nind number of individuals
Ngen maximum number of generations
pcross crossover probability
pmut mutation probability
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