
A series solution for the vibrations of composite laminated deep curved
beams with general boundaries

Tiangui Ye a, Guoyong Jin a,⇑, Xinmao Ye a, Xueren Wang b

a College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, PR China
b Naval Academy of Armament, Beijing 100161, PR China

a r t i c l e i n f o

Article history:
Available online 14 March 2015

Keywords:
Series solution
Vibration
Composite laminated
Curved beam
General boundary

a b s t r a c t

In this paper, a series solution is derived for the vibration analysis of composite laminated deep curved
beams with general boundary conditions. The effects of shear deformation, inertia rotary and deepness
term are considered in the formulation. Under the current framework, the governing equations and
the related boundary equations are obtained via the Hamilton’s principle. And each of beam displace-
ments, regardless of boundary conditions, is expanded as a modified Fourier series composed of a
standard cosine Fourier series and certain supplementary terms introduced to remove the potential
discontinuities at the ends, thus ensure and accelerate the convergence of the series representation.
The characteristic equations are then derived directly in an exact sense by solving the equations of
motion in matrix form by combining the associated boundary equations and the modified Fourier series
representation. The convergence and accuracy of the solution are tested and validated by several numeri-
cal cases against the results available in the literature, with excellent agreements obtained. A systematic
parametric study is also performed regarding the effects of shear deformation and inertia rotary,
deepness term, boundary conditions, lamination schemes, material and geometrical parameters.
Finally, several numerical results of composite laminated deep and shallow curved beams with different
geometry dimensions are presented for various boundary conditions and lamination schemes, which may
serve as benchmark solutions for the future researches in this field.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In practical applications ranging from outer space to the deep
ocean, engineering structures, such as aircrafts, rockets, automo-
biles, vessels and submarines, are often applied in complex
environment conditions and can be subjected to various dynamic
loads which can lead to the vibratory behaviors of the structures.
In all these applications, the engineering structures may fail and
collapse because of material fatigue resulting from vibrations.
Therefore, it is of particular importance to understand the struc-
tural vibrations and reduce them through proper design to ensure
a reliable, safe and lasting structural performance. An important
step in the vibration design of an engineering structure is the
evaluation of its vibration modal characteristics, such as natural
frequencies and mode shapes. This modal information plays a
key role in the vibration design of the structure when subjected
to dynamics excitations.

Beams are one of the most fundamental structural elements. A
beam is typically described as a structural component having one
dimension relatively greater than the other dimensions. Almost
every engineering structure contains one or more beam compo-
nents, such as bridges, helicopter blades and robot arms. In addi-
tion, many structures can be modeled at a preliminary level as
beams. For example, a spring board or support of a wind power
generation can be treated as a cantilever beam, and a span of an
overhead viaduct or bridge can be viewed as a simply supported
beam. A thorough understanding of the vibration characteristics
of beams is of great significance for engineers to predict the vibra-
tions of the whole structures.

In recent decades, many conventional beams used in the engi-
neering applications are gradually being substituted by composite
laminated materials due to their advanced material properties,
including high strength-weight and stiffness-weight ratios, excel-
lent vibration characteristics and good fatigue properties.
Researches on the vibration and dynamic analyses of composite
laminated beams have been increasing rapidly in the last two dec-
ades. A paper which reviewed most of the researches done in years
1989–2012 on the vibration analysis of composite beams by
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Hajianmaleki and Qatu [1] showed that research articles on the
subject during period 2001–2012 are more than twice than those
of 1989–2001. Due to the great importance, this paper considers
the vibrations of composite laminated beams.

Composite laminated beams can be straight and curved.
Generally, straight beams can be considered as a special case of
curved beams with infinite radius of curvature (zero curvature).
The vibrations of straight composite laminated beams with differ-
ent boundary conditions have been studied intensively in the
literature. Some of the more recent studies are those of Goyal
and Kapania [2], Jafari-Talookolaei et al. [3], Li et al. [4–7], Khdeir
[8], Chen et al. [9], Marur and Kant [10], Sakiyama et al. [11],
Teboub and Hajela [12], Aydogdu [13], Vo and Thai [14,15],
Khdeir and Reddy [16]. For the curved composite laminated beams
(with different boundary conditions), however, only very limited
references are available. Among those available, Li et al. [17] stud-
ied the vibration characteristics of laminated composite shallow
circular arches by the dynamic stiffness method. Malekzadeh
et al. [18,19] presented a differential quadrature solution for mod-
erately thick laminated circular beams with general boundary con-
ditions. Khdeir and Reddy [20] developed a model for the dynamic
behaviors of laminated composite shallow arches from shallow
shell theory. Tseng et al. [21] studied the free vibration of compos-
ite laminated beams of variable curvature based on the
Timoshenko-type curved beam theory. Hajianmaleki and Qatu
[22] employed a rigorous first order shear deformation theory
along with modified ABD parameters to analysis the static and free
vibration behaviors of generally laminated deep curved beams.
Qatu and Elsharkawy [23] presented exact solutions for laminated
composite beams with deep curvature and arbitrary boundaries by
Ritz method. It has also been of great interest for researchers to
develop an accurate and efficient formulation which can be used
to determine the vibration behaviors of beams. During the last dec-
ade, Erasmo Carrera proposed the Carrera Unified Formulation
(CUF), which was first applied to plates and shells and then
extended to beams. The CUF permits one to develop a large num-
ber of beam theories with a variable number of displacement
unknowns by means of a concise notation and by referring to a
few fundamental nuclei. Higher-order beam theories can be easily
implemented on the basis of the CUF, and the accuracy of a large
variety of beam theories can be established in a hierarchical and/
or axiomatic vs. asymptotic sense. A modern form of beam theories
can therefore be constructed in a hierarchical manner [24–27].

After the review of the literature in this subject, it appears that
most of the articles deal with a method or technique that is only
suitable for a particular type of classical boundary conditions, i.e.,
simply-supported supports, clamped boundaries and free edges,
which typically requires constant modifications of the solution
procedures and corresponding computation codes to adapt to dif-
ferent boundary cases. This could become a very tedious work
and result in repetitive programming and large computing cost
due to the fact that the boundary conditions of a composite lami-
nated beam may not always be classical in nature. A variety of pos-
sible boundary restraining cases, including classical boundary
conditions, elastic restraints and their combinations may be
encountered in the engineering practices. Therefore, it is necessary
and of great significance to develop a unified, efficient and accurate
formulation which is capable of universally dealing with composite
laminated beams with arbitrary lamination schemes and general
boundary conditions.

To the best of the authors’ knowledge, vibration analysis of
composite laminated deep curved beams with general boundary
conditions is not available in the literature. Hence, in view of the
apparent void, the present paper presents an endeavor to comple-
ment the vibration analysis of composite laminated deep curved
beams. The title, A series solution for the vibrations of composite

laminated deep curved beams with general boundaries, illustrates
the main aim of this paper, namely: to develop a solution which is
capable of dealing with vibrations of composite laminated deep
curved beams with arbitrary lamination schemes and general
boundaries, including classical boundaries, elastic supports and
their combinations, thus to provide a unified and reasonable accu-
rate alternative to other analytical and numerical techniques.

Under the current framework, the modified Fourier series
method together with the Hamilton’s principle and the artificial
spring boundary technique are adopted to derive the theoretical
formulation. The general boundary conditions of the beam are rea-
lized by applying the artificial spring boundary technique and the
equations of motion and the related boundary equations are
derived via the Hamilton’s principle based on the first-order shear
deformation theory. Each beam displacement, regardless of bound-
ary conditions, is expanded as a modified Fourier series composed
of a standard cosine Fourier series and certain supplementary
terms introduced to remove the potential discontinuities at the
ends and thus ensure and accelerate the convergence of series
expansion. The characteristic equations are then derived directly
in the matrix form by solving the equations of motion by combin-
ing the associated boundary equations and the modified Fourier
series. The convergence and accuracy of the present formulation
are tested and validated by several numerical cases against the
results in the literature. The effects of shear deformation and iner-
tia rotary, deepness term, boundary conditions, lamination
schemes, material and geometrical parameters are investigated
in detail as well. Finally, some new results are presented to provide
useful information for the future researches.

2. Theoretical formulations

2.1. The model

As shown in Fig. 1, a laminated deep curved beam with uniform
thickness h, width b is selected as the model. The beam is
characterized by its middle surface, in which R represents the
mean radius of the beam and h0 denotes its included angle. To
describe the beam clearly, we introduce the following coordinate
system: the h-coordinate is taken along the length of the beam,
and b- and z-coordinates are along the width and thickness direc-
tions, respectively. u;v and w separately indicate the middle sur-
face displacement variations of the beam in the h, b and z
directions. The beam is assumed to be composed of arbitrary com-
posite layers, which are perfectly bonded together. The distances
from the top and the bottom surfaces of the kth layer to the middle
surface are represented by Zkþ1 and Zk accordingly.

2.2. Kinematic relations and stress–strain relations

Within the framework of the first-order shear deformation the-
ory, the displacement and rotation components of an arbitrary
point of the laminated curved beam can be expressed as:
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Fig. 1. Schematic diagram of composite laminated curved beams.
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