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Since in a shrink fit the transferable moment essentially depends on the interface pressure between
inclusion and hub, the interface pressure should be as large as possible. This may be facilitated by a par-
tially plastic design, which however also has some drawbacks like a possible permanent redistribution of
the stresses after operating at high angular speeds and temperatures. In contrast to that, in the present
study the use of a functionally graded hub in an elastically designed interference fit with solid inclusion is
proposed. It is shown that for an appropriate grading not only the weight of the hub can be reduced
noticeably as compared to a homogeneous hub, but also that particularly a much better performance
at rotation can be achieved, which predominates over marginal disadvantages at high temperatures.

The generally valid analytical results provide a comprehensive means for the practicing engineer for
the design of this kind of shrink fits.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As shrink fits are a simple and cost-effective means of transfer
of moment, they frequently are found in mechanical engineering:
examples are shrunk-on rings, armature bandages in rotating
machines, or tires of railway wheels [1], to mention but a few.
Hence, due to their importance, many studies of their behavior
were performed by (semi-) analytical as well as numerical meth-
ods. Since under certain circumstances a partially plastic design
for better utilization of the material is admissible, often not only
elastic but also elastic-plastic states were taken into consideration.
For both cases, an application-oriented basic survey of the design
of shrink fits can be found in the monograph by Kollmann [2]. Later
on, special attention was paid to the widely-used thermal assem-
bly process, see, e.g., the studies by Cordts [3], Mack [4,5], Bengeri
and Mack [6], Mack and Bengeri [7], Sen and Aksakal [8], DoleZel
et al. [1], and Lorenzo et al. [9]. Moreover, several investigations
on (transient) heating during operation were performed (e.g.
[10-14]), and also effects of various material laws and/or geomet-
rical properties were studied in a number of papers (e.g. [15-20]);
in some of these investigations rotation of the shrink fit was taken
into account, too. Furthermore, special design procedures were
proposed [21].

Since for given geometry of the shrink fit and friction coefficient
at the interface between inclusion and hub the transferable
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moment depends solely on the interface pressure, the latter should
be as large as possible. However, maximizing the interface
pressure under all operating conditions is limited by several
constraints.

As was mentioned above, a possibility to achieve a high inter-
face pressure is to admit partially plastic behavior; if however
purely elastic behavior is required a priori - e.g., if the shrink fit
shall be easily dismountable without permanent deformation -,
an elastic-plastic design cannot be chosen, of course. Nevertheless,
the most important issue is a reduction of the interface pressure
with increasing angular speed and/or heating during operation.
This reduction may be a transient one (which is particularly pro-
nounced for a high rate of the outer surface temperature, see
[13]), or in case of an elastic-plastic design also a permanent
one, accompanied by a permanent redistribution of the stresses
in the entire device. And a further point, which becomes increas-
ingly important in engineering design, is to minimize the weight
of the device while maintaining a good or even excellent perfor-
mance of the shrink fit.

Hence, an interesting alternative (or at least supplement) to
admitting partial plasticization might be the use of a functionally
graded material (FGM), particularly for the hub. As is well known,
in a machine part of FGM the material properties like modulus of
elasticity, density, coefficient of thermal expansion, and yield
stress vary continuously and can - to a certain extent - be tailored
in an appropriate way (for survey articles on this topic see, e.g.,
[22-25]). Thus, the aim of the present study is to analytically
investigate the essential features of a purely elastic shrink fit with
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solid inclusion and functionally graded hub, taking both rotation
and an elevated temperature into account. The material properties
are presupposed to vary according to a power law in the radial
direction; in particular, the case of radially decreasing density of
the hub is considered. The latter property may be achieved, e.g.,
by using a steel/aluminum FGM, which can be produced by a pow-
der metallurgical process, i.e. by appropriate mixing of the respec-
tive pure powders, cold pressing, and subsequent sintering (for
details see [26]). Then, for a sufficiently large ratio of outer surface
radius to interface radius a considerably better performance at
rotation may be achieved, accompanied by a substantial saving
of weight as compared to a homogeneous hub. These two signifi-
cant advantages must be weighted against the fact that a margin-
ally worse evolution of the interface pressure with increasing
temperature may occur. It is the intention of this paper to thor-
oughly discuss these effects and to support the practicing engineer
in deciding whether a shrink fit with FGM-hub might be advanta-
geous for the specific application under consideration.

The paper is organized as follows: in Section 2, the statement of
the problem is given, and the governing equations are derived. In
Section 3, the stress distribution is discussed, and particularly the
interface pressure under various operating conditions is studied.
Finally, some concluding remarks are made in Section 4.

2. Statement of the problem and governing equations
2.1. Statement of the problem

The subject of the investigation is a cylindrically symmetric
shrink fit with homogeneous solid inclusion (0 < < a) and an
FGM-hub (a < r < b) with free cylindrical outer surface,

r=b: 0,,=0; (1)

it is presupposed that the axial length c of the device under consid-
eration is much smaller than the diameter of the inclusion (see
Fig. 1), and therefore a treatment as a plane stress problem is feasi-
ble [2,21], so that

Ozi = 07 Ozh = 07 (2)

where the indices i and h are here and in the following assigned to
the inclusion and the hub, respectively. As a matter of course, the
radial displacement u has to comply with the condition

r=0: u=0, (3)
and the relations

r=a: O0yj=0rp, (4)

r=a: u,—u=d (5)

with the interference d hold.

A purely elastic design of the shrink fit under all operating con-
ditions is required, and slowly varying angular speed is
presupposed.

Fig. 1. Sketch of the shrink fit (prior to the assembly); (D inclusion, @ hub.

2.2. Governing equations

First, the basic equations shall be summarized. Taking a variable
density p = p(r) into account, the equation of motion in radial
direction reads

d(ra;)

o 0= —p(r)w*r?. (6)

For small deformations, the geometric relations are

du u
==, €=-. 7
a’ @
Furthermore, considering a variable modulus of elasticity E = E(r)
and variable coefficient of thermal expansion o = o/(r), but constant
Poisson’s ratio v (as discussed below), the generalized Hooke's law
reads

€r

‘ -

a:EU%m—vw%+MﬂR (8)
1

€ = B (g —vor) +o(nT, 9)

where T means the difference of absolute and reference

temperature.

Next, for the FGM-hub the dependence of p, E, and « on the
radial coordinate must be specified: as was already mentioned in
the Introduction, a power law is presumed (compare e.g. related
studies for disks by Horgan and Chan [27] or Tutuncu and Temel
[28]). The basic grading law is however not postulated for the vol-
ume fractions of the constituents (e.g. [29]), but for the modulus of
elasticity, and the dependence of the other physical quantities on r
then is derived by the rule of mixture. The reason for this is that in
this case a closed-form solution of the differential equations can be
found, and therefore a purely analytical discussion of the problem
is possible.

The general linear rule of mixture reads [29]

Preg(r) = PriVi(r) + PraVa(r); (10)

there, Pr.; means an effective material property, and V; is the vol-
ume fraction of material j with property Pr;, j = 1,2. In the follow-
ing, it is further postulated that the material at the inner surface of
the hub (denoted by the index s) is pure constituent s of the FGM
(i.e., Vs(a) = 1) and the same material as used for the homogeneous
inclusion. If the index I denotes the second constituent of the FGM-
hub, it is obviously

Vi(r) =1 = Vy(r). (11)

Now, presuming that in the hub the modulus of elasticity varies
according to

r

m
E(r) =E(¢) . (12)
there follows from (10)-(12) that the volume fraction of constituent
s should vary with r according to
Es (L)m - El

a

E; —E

Then, applying the rule of mixture (10) to the density p(r), the coef-
ficient of thermal expansion o/(r), and also to the uniaxial yield limit
o,(r), respectively, one finds

Vs(r) = (13)

r m
Prog(r) = Ap(Z) + By (14)
with
_ Es(Prs — Pry) _ EsPry— E\Pry
Apr = T E.—E By = T E-E (15)



Download English Version:

https://daneshyari.com/en/article/251324

Download Persian Version:

https://daneshyari.com/article/251324

Daneshyari.com


https://daneshyari.com/en/article/251324
https://daneshyari.com/article/251324
https://daneshyari.com/

