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a b s t r a c t

In the present paper the authors focus on constitutive mappings for steel fibre reinforced concrete, SFRC.
The anisotropic properties of this composite are caused by the orientation distribution of fibres. The con-
stitutive relation is developed for one meso-volume element of SFRC as a combination of isotropic and
orthotropic St. Venant–Kirchhoff material models, which are applied to concrete matrix and to steel
fibres, respectively. The alignment tensors and orientation distribution function adopted from the
mesoscopic continuum theory are utilised to identify the material meso-symmetry axes and to asses
the contribution of fibres in the symmetry axes defined. While assessing the orthotropic meso-elasticity
for fibres, the elasticity of an individual fibre in its local coordinates is transformed into the material
meso-symmetry axes and weighted with the orientation distribution function of fibres. The advantage
of the material model developed for SFRC is that it uses complete orientation information of fibres
(two angles in spherical coordinates) and utilises tensor quantities complying with material objectivity.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Examples of natural materials with anisotropic material proper-
ties are wood, liquid crystals, soft tissue, examples of artificial ones
include fibre-reinforced composites with a great variety of matrix
and fibre materials. The development of artificial composites is
often motivated by the need to increase material strength in an
efficient and economically reasonable way. The aim of adding
fibres to the matrix is the improvement of specific mechanical
properties leading, however, often to anisotropic behaviour, which
can be observed in reinforced rubber-like materials [28], in fibre-
reinforced polymers [11,27,35], in carbon-reinforced composites
[17], and paper [10]. The present research focuses on a cementi-
tious composite formed by the mixing of concrete matrix with
steel fibres, SFRC. The motivation to study this composite comes
from the demand for using it as a material of load- bearing
structures to reduce the construction time and improve the quality
of structures. Despite the modelling of the properties of this

composite is still a subject for discussions and research in engi-
neering community [42], it is already quite extensively employed
in the construction industry, for example, in floors resting on soil
[24] and even in some load-bearing structures, such as elevated
floor-slabs [6,41]. The complexity of SFRC also involves the
presence of anisotropic behaviour occurring due to the different
alignments of fibres. For example, when the alignment of fibres
coincides with a principal stress in a structure, the contribution
of fibres to material strength is more pronounced than otherwise.
Although, the use of the orientation distribution function for short
fibres dates back as far as 1952 [10], when a two-dimensional case
was extensively analysed, the material models available for
concrete reinforced by short fibres usually either consider the ori-
entation of fibres utilising only a one-dimensional case with
aligned fibres [5,40] or assume a mean orientation with respect
to a predefined axis and use one orientation angle as a parameter
[18,25]. One approach is the orientation number (ON), which is
defined as an average projected length of fibres in a cross-section
onto the normal of the cross-section divided by the fibre length
[18]. Another approach is the orientation profile (OP) [25], which
extends the concept of the orientation number counting the
amount of fibres (out of the total number of fibres given) within
different inclination intervals assuming a pre-defined statistical
distribution. An alternative would be the use of full orientation
information of fibres and tensor quantities, as it is done for other
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materials containing or consisting of orientable particles
[1,2,12,14,20,45,46]. In spherical coordinates the position of a point
is specified by three numbers: radial distance, inclination angle,
azimuth (in-plane) angle. For the description of the orientation of
a fibre two angles are necessary and the radius is not needed.

Within the present research, an orthotropic linear-elastic
constitutive model for one meso-volume element of SFRC sub-
jected to small (infinitesimal) deformations is developed. The
model utilises the full orientation information of fibres (two angles
in spherical coordinates), and employs tensor quantities. For
describing the alignment of steel fibres the characteristics of the
mesoscopic continuum theory are used: 2nd order alignment ten-
sor to identify the material meso-symmetry axes and orientation
distribution function to estimate the contribution of fibres in the
symmetry axes defined [1,12,32].

The structure of the material model developed is based on a
hyperelastic material. First, the strain-energy density function
was considered as a function of the Lagrangian strain tensor [33].
To keep the material symmetry of orthotropic or isotropic
hyperelastic material, the strain-energy density function should
be given as an isotropic tensor function [21]. In turn, the isotropic
tensor function can be represented as a function of its principal
traces. The reasoning continues by the introduction of structural
tensors enabling to lay down the material symmetry, and results
in the isotropic tensor function of arguments among which are
the structural tensors. In case of isotropic material symmetry the
structural tensors are vanishing for the lack of preferred directions.
For the orthotropic material symmetry the structural tensors are
composed using the eigenvectors of the 2nd order alignment
tensor representing the dominating directions of fibres. Thereby,
the eigenvectors specify the material symmetry axes of one
meso-volume element of SFRC. Onward, the quadratic terms of iso-
tropic tensor function are utilised, thus leading to the orthotropic
and isotropic St. Venant–Kirchhoff models, which, being differenti-
ated, result in the 2nd Piola–Kirchhoff stress tensors. The advantage
of using the 2nd Piola–Kirchhoff stress tensor for the case of linear-
ised-elasticity is its symmetry and the differentiation gives the sec-
ond elasticity tensor (4th order elasticity tensor). While assessing the
orthotropic meso-elasticity for fibres, the longitudinal elasticity of an
individual fibre in its local coordinates is transformed into the struc-
tural reference frame and weighted with the orientation distribution
function of fibres. As a result, the orientation-weighted orthotropic
meso-elasticity of a fibre in the structural frame is received. Further,
this elasticity is transformed into material meso-symmetry
coordinates specified by the eigenvectors of the 2nd order alignment
tensor, which makes it possible to formulate the constitutive relation
for one meso-volume element of SFRC in the material meso-symme-
try system of coordinates using the elasticity constants weighted
with the orientation distribution function of fibres.

In the application presented, the calculated fibre orientation
parameters—2nd order alignment tensor and orientation distribu-
tion function of fibres—are based on experimentally measured
fibre orientation distributions. The experimental samples were
extracted from full-size floor-slabs (Section 6) and analysed by
X-ray micro-computed tomography (lCT). The orientation of each
individual fibre was measured and the orientation state of all fibres
in a sample were computed. The detailed description of the
application of lCT method for measuring the parts of SFRC
structures and the analysis of outcomes are presented in [39].

2. Basic notations and definitions

Vectors and tensors are either denoted by bold letters or using
index-notation for components with respect to an arbitrary fixed
basis, for shortness the basis vectors will be omitted from the
equations. Explicit calculations are performed in Cartesian

coordinates. In index-notations, the Einstein summation conven-
tion is used. A summary of the used symbols and notation is given
in Table 1.

3. Behaviour of SFRC

The tensile strength of SFRC depends on the alignment of fibres
in the concrete matrix [4]. In a tensioned SFRC member, where all
fibres are aligned with each other, as well as with the principal ten-
sile stress, the fibres have an optimal orientation and thus contrib-
ute to structural tensile capacity with the highest efficiency. In a
typical concrete member, which is reinforced by steel bars in the
direction of expected tensile stresses, the stress behaviour has an
orthotropic character. A similar situation may be in a SFRC member
and the problem is to identify and model the directions of fibre
alignments. The measurements of fibre orientations from the sam-
ples extracted from full-size floor slabs, utilised in the present
research, revealed the variations of fibre orientation distributions
along the all (X;Y; Z) axes of the slabs. The latter indicates that a
theory capable to consider the spatial—three-dimensional—nature
of SFRC material properties is needed. Thus, the constitutive rela-
tion for SFRC is justified to be developed based on orthotropic
material model. The detailed outcomes of the measurements of
fibre orientations and the features of fibre alignments are
presented in [13,39].

In addition, a linear dependence between stresses and deforma-
tions is assumed. Let us examine a bended concrete member. In
general, compressed concrete is an elasto-plastic material, where
simultaneously both elastic and plastic deformations are
developing. As a consequence, the relation between the stress
and deformation should be non-linear. In a bended concrete, until
the first cracks have appeared in the tension zone of a cross-section
the relation between the stress and deformation can be considered
as linear [3], Fig. 1.

As soon as cracks are occurring in the tension zone, the
deformations start to grow rapidly and the member breaks
suddenly in a brittle manner. Accordingly, SFRC has a similar brittle
character since the failure regime of SFRC is largely determined by
the mode of the loss of bond strength on fibre-concrete interface,
and this is rather brittle than ductile [47]. The brittle behaviour

Table 1
Summary of used symbols and notation [15,33].

v;v i vector (bold small letters)
A;Aij 2nd order tensor
hliA;Al1 ...ll

l-order tensor

I; h4iI 2nd and 4th order identity tensors
v � n ¼ A; v inj ¼ Aij outer product of two vectors

l-order symmetric irreducible (traceless) part of an
l-order symmetric tensor formed by the l-order
outer products of a vector n with itself

AB ¼ A � B ¼ AikBkj inner product (also called scalar- or dot-product)
A ~� B ¼̂ Aij ~� Bkl ¼ Milkj modified outer product
W ¼WðFÞ strain-energy density function
F deformation gradient

E ¼ 1
2 ðF

T � F� IÞ Lagrangian strain tensor

e ¼ 1
2 Fþ FT
� �

� I infinitesimal strain tensor

S ¼ @W
@E

2nd Piola–Kirchhoff pseudo-stress tensor
ðcÞ; ðmÞ; ðf Þ; ðsÞ refer to composite, matrix, fibres, steel,

respectively
ij;i;j; i; j ¼ 1;2;3 upper indices refer to material symmetry axes
ðf msÞ; ðf str Þ refer to orientation-weighted fibres in material

meso-symmetry and structural coordinates,
respectively.

S refers to symmetric part of a tensor (minor
symmetry within last 2 indices)
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