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a b s t r a c t

In this paper we investigate the mechanical behaviour of cross-laminated timber panels by a computa-
tional homogenisation approach. A finite element procedure is adopted within a multi-scale modelling
framework to determine the constitutive response of timber. As some of the microstructural parameters
of wood are either not well-known or susceptible to considerable variation, we introduce uncertainty in
the definition of the material. In order to validate the present multi-scale model, we measure experimen-
tally the longitudinal Young’s modulus and density of sawn wood beams made of radiata pine. In addi-
tion, we carry out several experimental tests on cross-laminated timber panels subject to bending, shear
and compression loads. Our numerical predictions are compared with the experiments and are validated
successfully, revealing the potential predictive capabilities of the present multi-scale modelling for the
analysis of wood materials and timber structures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In spite of the evident ecological advantages of building with
wood, and the considerable growth that the total production is
experiencing in the world market [1], the benefits of using wood
in the building and construction sector are still far from being
maximised. This is mainly due to the fact that dimensioning
practices and many existing structural design rules are still based
on an empirical background [2]. When compared to the structural
design codes of more popular building materials, such as concrete
or steel, whose codes and regulations have undergone a remarkable
modernisation over the last few decades, standards for the
design of timber structures are still in a very preliminary state of
development [3]. This has inevitably led to discourage the use of
timber in the construction sector.

The reason for the slow progress in the development of timber
design codes, and in particular, in the difficulties to fully under-
stand the mechanics of timber materials, lies mainly in the highly
complex and intricate nature of wood microstructure. At very

small scales, wood shows a complicated (but well organised) hier-
archical nature distributed across multiple spatial scales, from sub-
micrometer dimensions to macroscopic scales [4]. This important
feature has been a subject of intensive research over the last few
years by means of multi-scale homogenisation techniques. Holm-
berg et al. [5] studied the mechanical behaviour of wood by a
multi-scale procedure incorporating growth rings, irregularity in
the shape of cells and anisotropy in the layered structure of cell-
walls. Hofstetter et al. [6,7] suggested five elementary phases for
the mechanical characterisation of wood. These were hemicellu-
lose, lignin, cellulose, with its crystalline and amorphous portions,
and water. Qing and Mishnaevsky [8,9] proposed a model taking
into account several scale levels and investigated the influence of
microfibril angles, shape of the cell cross-section and wood density
on the elastic properties of wood. Later, Qing and Mishnaevsky [10]
extended their model by incorporating progressive damage to the
homogenised elasticity matrix. Rafsanjani et al. [11] investigated
the hygro-mechanical behaviour of growth rings by means of the
computational homogenisation of wood at two scales. In Refs.
[12,13], the authors investigated the non-linear irreversible
behaviour of the wood cell-wall composite. A similar multi-scale
approach was adopted to develop a new material [14], by following
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a wood-inspired strategy [15,16]. Saavedra Flores et al. [17] stud-
ied the extensibility of the wood cell-wall composite by consider-
ing uncertainty in the material properties. Nevertheless, despite
the increasing interest in this subject and the considerable effort
devoted to the computational modelling of timber structures
[18–21], the complete understanding of the mechanical properties
of this material at small spatial scales, and their implications on the
macroscopic response, is still an issue which remains open at
present.

In recent years, cross-laminated timber (CLT) has become a
new prefabricated constructive system, whose use has been
increasingly spreading over Europe [22] and elsewhere, particu-
larly in the construction sector. CLT panels are composite struc-
tures consisting of several layers of boards stacked crosswise
and glued together on their faces. Different methods have been
adopted for the determination of the basic mechanical properties
of CLT, comprising analytical and experimental approaches. How-
ever, to date no method has been universally accepted by CLT
manufacturers and designers [23]. Therefore, a profound knowl-
edge about the mechanical behaviour of these products is neces-
sary to improve and develop design concepts [24] and
manufacture processes.

In order to establish a firm scientific basis for the better under-
standing of wood mechanics, and in particular CLT composite
structures, the main objective of this paper is to investigate the
mechanical behaviour of CLT panels by means of a multi-scale
computational homogenisation approach. We validate the present
multi-scale framework by comparing our numerical predictions
with experimental data of CLT panels made of radiata pine subject
to bending, shear and compressive loads.

2. Computational homogenisation

In the present type of homogenisation-based multi-scale theory
it is assumed that the macroscopic or homogenised strain tensor e
at any arbitrary point x of the macroscopic continuum is the vol-
ume average of the microscopic strain tensor field el over the
domain Xl of a representative volume element (RVE) of material.
Similarly, the macroscopic or homogenised stress tensor field r is
assumed to be the volume average of the microscopic stress tensor
rl, over Xl.

Furthermore, it is possible to decompose the local displacement
field ul over the RVE domain as a sum of a linear displacement
eðxÞy, which represents a homogeneous strain, and a displacement
fluctuations field ~ul. Here, y is the local RVE coordinate. The dis-
placement fluctuations field represents local variations about the
linear displacement eðxÞy and does not contribute to the macro-
scopic scale strain.

By taking into account the Hill–Mandel Principle of Macro-
homogeneity [25,26], which establishes that the macroscopic
stress power must equal the volume average of the microscopic
stress power over Xl, the virtual work equation for the RVE can
be reduced toZ

Xl

rlðyÞ : rsgdV ¼ 0; ð1Þ

with g representing the virtual kinematically admissible displace-
ments field of the RVE, and rs the symmetric gradient operator.

In order to make problem (1) well-posed, a set of kinematical
constraints upon the selected RVE is required. In what follows,
the choice of this set will coincide with the widely used periodic
boundary displacement fluctuations model [27], which is typically
associated with the modelling of periodic media.

We must note that in Eq. (1) the virtual work of the RVE body
force and surface traction fields vanish since they are the reaction
forces associated to the set of imposed kinematical constraints. By

taking this into account, and after a trivial tensorial manipulation,
the macroscopic stress tensor r can also be expressed as

rðxÞ ¼ 1
Vl

Z
@Xl

tðyÞ�sydA; ð2Þ

with Vl the volume of the RVE associated to the point x; t the RVE
boundary tractions, and �s the symmetric tensorial product.

A generic implicit finite element discretisation scheme is used
as the underlying framework. The first crucial component of the
implicit finite element approximation consists of an incremental
(time-discrete) counterpart of the original microscopic constitutive
law. Within a time interval Dt ¼ tnþ1 � tn, the microscopic stress
tensor rljnþ1 at time tnþ1 is determined as a function of the micro-
scopic strain tensor eljnþ1 at time tnþ1. The following basic ingredi-
ent in the finite element approximation is the incremental form of
the microscopic equilibrium Eq. (1). By introducing a time-discrete
constitutive functional, r̂l, the incremental equilibrium problem of
step nþ 1 can be obtained straightforwardly. In order to complete
the numerical approximation of the model, a standard finite ele-
ment discretisation h is introduced. By replacing the domain Xl

with its discrete counterpart Xh
l, the fully spatial–temporal discre-

tised version of Eq. (1) is obtained:Z
Xh

l

B|r̂l enþ1 þ B~uljnþ1

� �
dV � g ¼ 0; ð3Þ

in which B denotes the global strain–displacement matrix, enþ1 is
the prescribed finite element array of macroscopic engineering
strains at time tnþ1, r̂l is the incremental constitutive functional
at the RVE level that delivers the array of stress components,
~uljnþ1 is the array of global nodal displacement fluctuations and g
is the array of global nodal virtual displacements.

Within an infinitesimal linear elastic strain regime, the above
algebraic Eq. (3) can be solved directly by rearranging it in stan-
dard fashion as

½Fþ K~ul� � g ¼ 0; ð4Þ

where F is a global nodal force vector, and K the stiffness matrix.
For convenience, we shall assume the finite element mesh

topology here to be such that a one-to-one correspondence exists
between nodes of opposing sides of the RVE boundary. We split
the RVE mesh into three subsets of nodes: one set of interior nodes,
with corresponding quantities denoted by the subscript i, and;
two sets of boundary nodes denoted, respectively, with subscripts
+ and � so that for each node of set + with coordinate yþ there is
an opposite node of set � with coordinate y� satisfying the peri-
odic constraint. In this case, the periodic kinematical constraint
can be enforced by simply requiring each pair of such opposite
nodes to have identical displacement fluctuation. That is,
~ulþ ¼ ~ul� .

By applying the same partition to the components of F; K, ~ul

and g, and keeping in mind that gþ ¼ g� (for each pair of opposite
points yþ and y�, respectively), the explicit solution of Eq. (4) for
the nodal displacement fluctuations vector is given by

~ul_i

~ulþ

" #
¼ �

kii kiþ þ ki�

kþi þ k�i kþþ þ kþ� þ k�þ þ k��

� ��1 Fi

Fþ þ F�

� �
:

ð5Þ

With the global nodal displacement fluctuations vector ~ul at
hand, it is straightforward to compute the homogenised stress vec-
tor r by using the discretised version of Eq. (2). Then, the calcula-
tion of the corresponding homogenised elasticity matrix D is
trivial.

Finally, the computational homogenisation procedure described
in this section is implemented in the commercial software ANSYS
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