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a b s t r a c t

A variable metric stochastic theory of the elastic constants of textile composites with stochastic yarn (or
tow) geometry has been developed in the current study. A variable metric coordinate transformation is
utilized in this theory to introduce the cross-section shape fluctuations of yarn into the compliance of
textile composites. Six parameters are defined to describe the positioning and cross-section shape of yarn
completely. Then, the Taylor expansions of the local stochastic variable metric basis and the compliance
of yarn are executed. Finally, the volumetric averaging method is employed to obtain the elastic proper-
ties of textile composites. The numerical simulations show that the fluctuations of geometric parameters
may affect the elastic response of textile composites considered. The example of single straight yarn
proves the validity of the theory and presents the explicit formulas of influence of stochastic yarn geome-
try on elastic constants. Within the example of plain weave composite, random yarn cross-section shape
and twist degrade all of the elastic constants except the shear moduli and Poisson’s ratios in 1–3 and 2–3
directions, which are determined by the comprehensive effect of the stochastic scaling and twist.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With the textile composites increasingly being used in
aeronautical areas, there are more and more studies in mechanical
properties of textile composites. In the process of manufacturing of
textile composites, it is a real physical phenomenon that the yarns
(or tows) of textile have fluctuations with path and cross-section
shape. The fluctuations of geometric parameters of yarns can lead
to a scatter of the mechanical properties of composite.

Many authors and teams investigated the statistical features of
the loci and internal geometry of yarns of textile, and reproduced
virtual specimens by Markov Chain algorithm [1–6]. Bale et al.
[1] analyzed statistically the shape and positioning of yarns in
the 3-D woven composites by lCT. The information, including
the yarn centroids and the area, aspect ratio, and orientation of
the yarn cross-sections, are all analyzed. Blacklock et al. [2] devel-
oped the Markov Chain algorithm for generating replicas of textile
composite with the same statistical characteristics as specimens
imaged using tomography. Meanwhile, Rinaldi and coworkers [3]
used analogous algorithms to generate 3-D yarn representations.
The topological rules were defined to provide instructions for
resolving interpenetrations or ordering errors among yarns.
Compared to the energy minimization method [4], such a method

adjusted interference between yarns and was proved to be an
efficient geometric method. Similar to Ref. [1], Vanaerschot et al.
[5] used the reference period collation method to laminated poly-
mer composites and analyzed the systematic trends and stochastic
deviations. Correlation lengths were also analyzed. Then they used
WiseTex software to reproduce stochastic models and calibrate
Markov Chain algorithm for textile fabrics[6].

Whitney [7] studied the effect of fiber shape on in-plane and
bending properties of laminates by micromechanics model. Lee
et al. [8] established analytic model to predict the geometric char-
acteristics and the elastic constants of plain woven composites.
Parametric study was conducted to investigate the effects of yarn
crimp angle, the shape of yarn cross-section, and yarn size et al.
on the elastic properties of plain woven composites, too.
Yushanov and Bogdanovich [9,10] developed a general theory of
the elastic constants of composite with random waviness of the
reinforcements. Three types of composites including unidirection-
al, biaxial, and 3-D orthogonally woven reinforcements were ana-
lyzed. Fang et al. [11] used the stochastic theory [9] to analyze
the influence of distorted yarns on elastic properties and strength
of 3-D four directional braided composites.

However, the research regarding the effect of stochastic
geometric shape of composite reinforcement on elastic constants
is relatively few. Olave et al. [12] employed Monte Carlo simula-
tion and WiseTex software to analyze the influence of meso-scale
geometrical variability on laminate stiffness. The conclusions
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showed the laminate thickness and orientation are the largest
contributors to the stiffness dispersion. Vanaerschot et al. [13]
evaluated the effect of the geometrical variability at meso-scale
on the mechanical behavior of textiles, and pointed out that, for
2/2 twill woven textile, the resulting stiffness variation was
limited to less than 1% covariance with a mean value which
was 3% lower than the nominal model constructed with the
systematic patterns.

The purpose of this research is to establish a general theory of
the influence of stochastic yarn geometric parameters on the
elastic constants of woven composites. Firstly, a classification of
the yarns in a textile composite is introduced in the paper. A gen-
eral textile composite, included multi-layers composite, is divided
into several yarn genera, which is a term defined in such a way that
the yarns within a genus are statistically equivalent to one another
in the repeating structure of the textile composite [3]. Each genus
contains all of the yarns which have the same yarn direction and
statistical properties of geometric parameters in the whole textile
composite. The individual yarn of the genus is identified by path
vector and every stochastic geometric parameter. Therefore, we
can take an arbitrary yarn in a genus for example to introduce
the means and statistical properties of geometric parameters of
this genus into the compliance. A yarn with random cross-section
shape is mapped to an ideal yarn by the variable metric coordinate
transformation which converts an anisotropic problem induced by
random shape of yarn into a metric transformation. Compared to
existing approaches, one advantage of the developed theory is
not required the application of anisotropic mechanics theory, but
needs only the means and standard deviations of stochastic scaling
factors and twist angle of each genus.

This paper is structured as follows: In Section 2, six parameters
are defined to fully describe the yarn of textile composites (the first
three of them, constituting path vector, denotes the loci of yarns;
the others are geometry parameters which are defined to describe
the shape of yarn cross-section); Section 3 described the eval-
uations of covariance of geometric parameters; Then, in
Section 4, the expansion, mean and covariance of local stochastic
variable metric basis (LSVMB) are evaluated in sequence; Finally,
the mean of yarn compliance and global compliance averaging of
textiles are calculated in Section 5.

2. Definitions of path and geometric parameters

In order to describe a yarn (or tow) of textile completely, it
needs two parts of information: spatial position and geometry
information. An arbitrary yarn in 3D space is considered, see
Fig. 1. A set of orthogonal axes 1–3 is defined as global coordinate
system where 1-axis is along the longitudinal direction of yarn.
Three center position parameters ðx1; x2; x3Þ of yarn make up the
path vector r to identify spatial position of yarn. The cross-section
shape of yarn, normal to the path at any position, can be fitted to
ellipse approximately. Another three geometric parameters
ða; b; hÞ are used to characterize geometry of yarn cross-section. A
scaling matrix (detailed in Section 2.3) can be formed by the first
two parameters ða; bÞ corresponding to semi-major and semi-mi-
nor axes of elliptic cross-section, respectively; the last parameter
h is the orientation of yarn’s cross-section, which is a description
of twist extent of yarn around the tangent vector of the yarn path.
A triad of unit vectors fe1; e2; e3g is an orthogonal basis of the glob-
al coordinate system 1–2–3.

2.1. Path vector

Consider an arbitrary center path curve P0P1 of yarn, see Fig. 1.
The path vector r is specified as a parametric form

rðnÞ ¼ xiðnÞei ð1Þ

where eiði ¼ 1;2;3Þ are global basis, n is the running parameter in 1-
axis direction.

The path vector r can be orthogonal decomposed as x2ðnÞ; x3ðnÞ
in 1–2 and 1–3 planes, respectively, as depicted in Fig. 2.
Accordingly, x2ðnÞ; x3ðnÞ define path curve of yarn in 1–2 and 1–3
planes respectively.

2.2. Twist angle

A triad of unit vectors fe0ig at any point along the path forms a
local orthogonal basis of local coordinate system 1’–2’–3’. Consider
a yarn cross-section at an arbitrary point Cn on the yarn path P0P1,
see Fig. 1. If unit vector e01 is selected as tangent vector of P0P1, the
unit vectors e02; e03 are chosen as semi-major and semi-minor axis
of yarn cross-section, respectively. Plane An is parallel to 1–2 plane
at point Cn, and mn is the line of intersection of An and yarn cross-
section at point Cn. The twist angle h is defined as the angle
between the semi-major axis of yarn cross-section and the inter-
secting line mn, which can be decomposed into two parts:

h ¼ hðnÞ ¼ hðnÞh i þ h
�
ðnÞ ð2Þ

where hðnÞh i is the mean of twist angle, and h
�
ðnÞ is stochastic

centered function.

Fig. 1. Spatial path vector r, twist angle h, and global fe1; e2; e3g, local fe01; e02; e03g,
and variable metric basis fe001; e002; e003g related to the yarn path P0P1.

Fig. 2. The orthogonal decomposition of path vector r in 1–2 and 1–3 planes.
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