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a b s t r a c t

In this paper, large amplitude vibration of functionally graded material (FGM) plates subjected to com-
bined random pressure and thermal load is studied using finite element modal reduction method. The
material properties, which are depended on the temperature, vary in the thickness direction by a simple
power law distribution in terms of the volume fraction of the constituents. The equations of motion in
structural node degrees of freedom (DOF) are obtained based on von-Karman large deflection and first
order shear deformation theory. The order of these equations is reduced using a novel approach for selec-
tion of the base vectors. Then the numerical results of the obtained reduced-order equations are com-
pared with those of reduced-order equations obtained by other base vectors and also with those of full
finite element method. It is shown that the proposed set of base vectors forms an excellent candidate
for reducing the order of the equations of motion.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sonic fatigue has been recognized as an important problem in
the aerospace technology. Aircraft panels can fatigue under strong
acoustical loads in thermal environment. Therefore, accurate
calculation of stress fields to predict the fatigue life is very impor-
tant. When aircraft panels are subjected to strong acoustical
excitation in high temperature, the stress-displacement relations
are nonlinear. Therefore, the governing nonlinear partial dif-
ferential equations of motion of such systems with complex
geometry and boundary/initial conditions can only be approxi-
mately solved by numerical methods such as finite element
method and Newmark approaches for spatial and temporal dis-
cretization, respectively. To reduce the computational cost and
time effort especially in model based controlling of such systems,
the order of the resulting large system of ordinary differential
equations obtained by for example finite element method can be
reduced using mode summation approaches. For more accurate
prediction of the system response, the order of the equations of
motion should be reduced using a multi-mode approximation
instead of a single mode one. The selection of base vectors and
determination of nonlinear stiffness coefficients in the reduced-
order equations are difficult tasks even for simple structures.
There are two approaches for calculating the nonlinear stiffness

coefficients: direct approach and indirect approach. In the direct
approach, presented by Nash [1] and Shi and Mei [2] these coeffi-
cients are calculated using a special finite element code. This
approach is effective and accurate. In the indirect approach, pre-
sented by McEwan [3] and Muravyov and Rizzi [4,5] the nonlinear
stiffness coefficients are calculated using static solutions of a fully
nonlinear finite element model of the system. Although in this
approach the coefficients are not meticulous but they can be easily
calculated even for complex structures. In order to select the base
vectors, almost all researchers used linear normal modes. Recently,
combinations of linear normal modes with other base vectors pre-
senting the effect of nonlinearity are suggested. For considering the
in-plane displacement effects, different approaches such as normal
membrane modes (NMM), normal modes (dominant transverse
modes) combined with dual modes (TD), explicit physical con-
densation of membrane degrees of freedom (EPCM), explicit modal
condensation and membrane effects (EMCM), implicit con-
densation of membrane (IC), implicit condensation and expansion
of membrane effects (ICE), and system identification for basis
selection (SIB) have been used. Rizzi and Przekop [6–8] suggested
NMM method for predicting the in-plane motions. Although this
method was successfully used by them for some applications, but
the selection of normal membrane modes and their proper number
is not an easy task, even for simple structures. Hollkamp et al. [9]
compared these methods using the dynamic response of a simple
clamed–clamped beam. They concluded that IC method is more
practical than others. Przekop and Rizzi [10–14], Spottswood
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[15], Feeny [16,17], Chelidze [18] studied the dynamic response of
systems using SIB method. The basic idea in SIB approach was
formed by a snapshot matrix using the results of full finite element
method. Then the columns of snapshot matrix are projected on the
linear normal modes. The normal modes that have greater percent-
age in the response form the base vectors used for reducing the
order of equations of motion. Gordon and Hollkamp [19] studied
the dynamic response of a simple shallow beam using IC, ICE and
full finite element methods. They demonstrated the usefulness of
ICE method. Gorden and Hollkamp [20] compared the results of
aforementioned methods with experimental results for a
clamped–clamped beam. Mignolet [21], Radu [22] and Hollkamp
[23] used TD method to represent the in-plane motions. They used
two simple nonlinear static responses for construction of these
dual modes. Kim et al. [24] presented another approach to con-
struct new dual modes (KTD). They showed the efficiency and
practically of these new dual modes for many complex structures.
Mignolent et al., [25] reviewed some of the direct and indirect
methods and showed that ICE, KTD and SIB methods were success-
ful to predict the response of complex structures. In the study of
dynamic thermal buckling response of structures, Javaheri [26]
presented the equilibrium and stability of FGM plates under ther-
mal loads using classical plate theory. Guo et al., [27] studied the
dynamic thermal buckling response of laminated composite shal-
low shells using EPCM. They also obtained thermal buckling
branches and showed two stable equilibrium configurations.
Perez et al. [28] validated KTD method by studying the dynamic
thermal buckling response of a FGM plate around its stable equilib-
rium positions. Ibrahim et al. [29] presented limit cycle oscillations
and post buckling deflection of FGM plates subjected to aerody-
namic and thermal loads using EPCM method. Sha et al. [30] stud-
ied the snap through and fatigue life prediction of curved panels
using a fully nonlinear finite element method. Alijani et al. [31]
investigated the dynamic response of FGM plates under harmonic
excitation in thermal environment. They added supplementary
nonlinear terms to include the in-plane displacements. The
dynamic thermal buckling response of FGM plates using three
dimensional theory of elasticity and classical plate theory was
studied by Dogan [32]. Allahverdizade et al. [33] presented the
dynamic response of electrorheological (FGER) beams using
EPCM method.

In this study a special nonlinear finite element code based on
von-Karman large deflection and first order shear deformation the-
ory is developed for large amplitude vibration of FGM plates sub-
jected to random pressure in thermal environment. The order of
the equations of motion in the structural node degrees of freedom
are reduced using different approaches including dominant trans-
verse modes (DTM), EPCM, KTD, SIB, and a novel approach devel-
oped in this study. This novel approach, which is a combination
of KTD and SIB methods, is named as modified system identifica-
tion base (MSIB) method in the present study. The results of the
reduced-order equations obtained by the proposed method will
be compared with those of other reduced-order methods and also
full finite element method in three nonlinear regimes: small ampli-
tude vibration around one of two stable equilibrium positions,
snap through response, and persistent snap through response.

2. Formulation

2.1. Equations of motion in structure node DOF

In this study the material properties of the FGM plates are
assumed to be functions of two variables: location and tempera-
ture. The material properties vary in the thickness direction based
on a simple power law distribution in the following form [34,35].

Pðz; TÞ ¼ PbðTÞ þ ðPtðTÞ � PbðTÞÞ
2zþ h

2h

� �n

ð1Þ

where P (z, T) is the effective material property. Pt (T) and Pb (T) are
the material properties of the top and bottom surfaces of the FGM
plate. h and n are the thickness of the FGM plate and the volume
fraction, respectively. T is temperature assumed uniformly dis-
tributed throughout the FGM plate. The equations of motions were
obtained by Przekop [36] for laminated shell and plate based on the
first order shear deformation theory and large-amplitude vibration
using Mindlin plate elements (MIN3). The global system equations
of motion can be expressed as [36].
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where Wb and Wm are nodal bending and membrane displacements,
respectively. Other terms are defined in [37]. Eq. (2) can be written
in the following compact form

M½ � €W
n o

þ KL½ � � KDT½ � þ K1ðWÞ½ � þ K2ðW2Þ
h i� 	

Wf g

¼ Prf g þ PDTf g ð3Þ

where [M] is the mass matrix, ½KL� contains first two linear parts of
the stiffness matrix, KDT½ � is the third part of the stiffness matrix
showing thermal effect, ½K1ðWÞ� and ½K2ðW2Þ� presented the linear
and quadratic parts of the nonlinear stiffness matrixes. fPrg and
fPDTg are the external random force vector and thermal load vector,
respectively. Since Eq. (3) contains nonlinear terms (stiffness matri-
ces) and random terms (external force), its solution is very time
consuming and difficult.

2.2. Equations of motion in modal coordinates

The order of the equations of motion in structural node DOF can
be reduced to modal coordinates using different types of base vec-
tors. The plate deflection can be expressed as a linear combination
of some known base vectors as

fWg ¼
XN

i¼1

uif gqiðtÞ ¼ ½/�fqg ð4Þ

where N is the number of base vectors which can be smaller than
the number of structure node DOF. There are several methods for
selection of these base vectors. In the following, KTD, EPCM, and
SIB methods are shortly described. More detail can be found in
[6,10,20,21,24,25] and [37].

2.2.1. Explicit physical condensation of membrane DOF (EPCM)
In the physical coordinates, the system of Eq. (2) can be sepa-

rated in two equations in the following form
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½Mm�f €Wmg þ ð½Kmb� þ ½K1mb�ÞfWbg þ ð½Km�ÞfWmg ¼ ff DT
m g ð6Þ
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