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a b s t r a c t

A continuum model of paperboard material possessing a high degree of anisotropy is established. To han-
dle the anisotropy, three vectors are introduced which phenomenologically represent the preferred direc-
tions of the material. The in-plane director vectors deform as line segments and the out-of-plane
direction deforms as a normal vector. This allows for a decoupling of the in-plane and the out-of-plane
responses in shearing. The model is developed for large plastic strains and consequently an expression
for the plastic spin has been proposed. The choice of plastic spin allows for a control of the direction
in which permanent deformations will occur. To show the predictive capabilities of the model, the impor-
tant industrial process of creasing is simulated. Both the simplified line crease setup, as well as the actual
rotation crease setup used in industrial applications are studied.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Paperboard is a material with a high degree of anisotropy,
which stems from the manufacturing process where the fibers
becomes aligned in preferred directions, which results in a highly
anisotropic structure. In this work, a 3D-continuum elasto-plastic
model for paperboard is established, i.e. a model that captures
the in-plane as well as the out-of-plane responses is developed.
Classically, paperboard is characterized as an orthotropic material
where the normals to the symmetry planes are denoted as
Machine Direction (MD), Cross Direction (CD) and out-of-plane
direction (ZD), cf. Fig. 1. The magnitude of the failure stress in
the MD direction is typically 2–3 times higher compared with CD
and about 100 times higher compared with the failure stress in
the ZD-direction, cf. [34]. Different modeling concepts have
traditionally been employed for the modeling of the in-plane and
the out-of-plane responses, such as using a combination of contin-
uum and cohesive elements, cf. [38,7,29]. In this work, a model,
which is able to handle the large degree of anisotropy using a
purely continuum based model, is presented.

Paperboard can be designed as a single-ply or multi-ply mate-
rial, where the fibers in the plies are processed mechanically or
chemically from wood fibers. The plies are designed to obtain
desired properties through the thickness of the paperboard. The

multi-ply board is a sandwiched structure, which is used to obtain
a light weight construction with as high stiffness as possible with-
out compromising other functionalities such as strength and con-
vertibility. The multi-ply design utilizes strong outer plies with
higher bending resistance to prevent cracks to form, while the mid-
dle plies are made weaker such that the material can easily be
folded to form a package. If a single-ply board is used, a combina-
tion of chemical additives can be pressed into the top and bottom
ply to obtain a layered structure. In this work however, focus will
be on the modeling of materials with a high degree of anisotropy,
and for that sake the inhomogeneous properties of paperboard in
the thickness direction has not been taken into account. The
inhomogenous material properties can easily be included in the
framework by a mapping of the material properties, cf. [20].
The different through thickness shear properties can be identified
by using a notched shear test, as developed in [28,30] or by grind-
ing off the plies and testing the material properties of individual
plies cf. [27]. Several mechanical characteristics for the in-plane
behavior of paperboard were determined in [2], such as visco-
elastic effects, plasticity and damage. Rate-dependence and
damage have not been considered in the current work.

To obtain well formed packages without defects, creasing is an
important industrial converting process and it is crucial for the
subsequent folding operation. Creasing has been studied experi-
mentally by several authors e.g. [11,12,26] and also in numerical
studies in [7,21,29]. The creasing operation reduces the initial
maximal bending moment and the deeper the scored line is
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creased, the more the maximal bending moment is reduced.
Earlier studies have modeled the simplified 2-dimensional line
crease setup, whereas in this work a rotation crease with a
3-dimensional pattern is simulated as well. The modeling of the
subsequent folding operation of paperboard has been investigated
in [5,20,17].

There exist several modeling techniques for the modeling of
fiberous structures such as paperboard. Network models have been
proposed in e.g. [10,22] where the fiber network was built up by
beam elements. Insights about the mechanics present at the meso-
and micro-scale of the fiber-network can be obtained by using net-
work models. To reduce the computional cost of network models,
the quasicontinuum approach was applied to fiberous materials
such as paperboard in [6]. Continuum models for paperboard have
previously been suggested, e.g. the in-plane models defined in
[32,23]. Combined continuum and delamination models have been
proposed in [7,29,21,38].

The in-plane yield surface in [39] and further developed in [9]
has been extended in the present work to take the out-of-plane
properties into account. The yield surface is based on a set of sub-
surfaces in the stress-space, where each subsurface is associated
with an internal variable. This approach allows the yield surface
to harden distortionally in the stress-space. The yield surface in
this work is equipped with additional subsurfaces such that out-
of-plane plasticity is accounted for. It was observed in [37,35], that
dilation in the ZD-direction is obtained as the paperboard is
sheared, and that increased shear yield stress is obtained as the
material is compressed. This feature is included in the proposed
model. Ideal plasticity will be assumed at the onset of failure in
the out-of-plane direction.

The article is organized as follows, in Sections 2 and 3 the kine-
matic description and the evolving anisotropy is presented. The
thermodynamic framework is established in Section 4, where ten-
sors will be considered in a Cartesian setting, i.e. following the
work of [14]. In Section 5, the specific model is presented and in
Section 6, aspects related to the calibration are discussed. The
model is implemented in a finite element framework and the
results from creasing operations are shown in Sections 7 and 8.

2. Kinematics

The motion of a material body from the reference configuration,
X0 2 R3, to the current configuration X 2 R3 in the time interval
T 2 ½t0; t�, is given by uðX; tÞ : X0 � T ! X. It is assumed that the
mapping u is sufficiently smooth. The vector X denotes the posi-
tion of a particle in the reference configuration and the position
of the same particle at time t in the current configuration is given
by x ¼ uðX; tÞ. The mapping of vectors in the reference config-
uration to the current configuration is given by the deformation
gradient F ¼ ru. To separate the deformation into an elastic and

a plastic deformation, a multiplicative split of the deformation gra-
dient is assumed, i.e.

F ¼ FeFp; ð1Þ

where Fe and Fp are the elastic and plastic deformation gradients,
respectively. The split (1) introduces a stress-free intermediate con-
figuration, which is not unique. A rigid body rotation of the
intermediate configuration will leave the intermediate config-
uration stress free and therefore the intermediate configuration
must be defined with respect to an arbitrary constitutive spin, cf.
[16,19]. For simplicity in this paper, this constitutive spin is set
equal to zero, i.e. an isoclinic configuration is adopted, as introduced
in [24]. Further on, the elastic deformation will be defined by the

elastic Finger tensor, be ¼ FeðFeÞT .
Using (1), the spatial velocity gradient defined as, l ¼ _FF�1, can

be additively split into

l ¼ le þ FeLpFe�1 ¼ le þ lp
; ð2Þ

where

le ¼ _FeFe�1; Lp ¼ _FpFp�1; ð3Þ

are referred to as the elastic and material plastic velocity gradients,
respectively. The plastic velocity gradient in (2) can further be split
into a symmetric part and a skew-symmetric part, i.e.

lp ¼ symðlpÞ þ skewðlpÞ ¼ dp þxp; ð4Þ

where dp is the plastic rate of deformation tensor and xp is the
Eulerian plastic spin, cf. [16]. The plastic spin, xp, is important to
specify for anisotropic materials that undergo large plastic deforma-
tions, cf. [18]. For later purposes, the symmetric part of the spatial
velocity gradient is defined as d ¼ symðlÞ.

3. Evolving anisotropy

The modeling framework for the anisotropy follows the format
outlined in [9]. To model the in-plane behavior, two director

vectors of unit length, v ð1Þ0 and v ð2Þ0 , aligned in the MD- and CD-
directions in the reference configuration are introduced. These
two vectors are assumed to phenomenologically represent the
in-plane preferred directions of the material. The director vectors
are assumed to be embedded in the continuum (i.e. the fiber-
network) and are chosen to follow the elastic deformation
gradient i.e.

v ð1Þ ¼ Fev ð1Þ0

v ð2Þ ¼ Fev ð2Þ0 :
ð5Þ

Note that due to the intermediate configuration being isoclinic, the
director vectors in the intermediate configuration become equal to

v ð1Þ0 and v ð2Þ0 , i.e. an identity mapping between the director vectors
in the reference configuration to the intermediate configuration.

Rather than using v ð3Þ ¼ Fev ð3Þ0 , a normal vector nð3Þ0 will be utilized

for the out-of-plane behavior. The normal vector nð3Þ0 in the refer-
ence configuration is expressed as

nð3Þ0 ¼ v ð1Þ0 � v ð2Þ0 ; ð6Þ

i.e. a vector normal to the in-plane directions. A normal vector
evolve according to the cofactor of the elastic deformation gradient,

nð3Þ ¼ JeFe�T nð3Þ0 ; ð7Þ

where Je is the determinant of the elastic deformation gradient, i.e.
Je ¼ detðFeÞ. The use of (7) is motivated by the fact that paperboard
in essence is a sandwiched structure, consisting of layers of fibers

Fig. 1. Illustration of the different material directions of paperboard resulting the
manufacturing process. The preferred directions are aligned with the Machine(1)-,
Cross(2)- and ZD(3)-directions.
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