ELSEVIER Contents lists available at ScienceDirect ## **Biochemical Pharmacology** journal homepage: www.elsevier.com/locate/biochempharm # Synthesis and pharmacological characterization of $[^{125}I]MRS5127$, a high affinity, selective agonist radioligand for the A_3 adenosine receptor John A. Auchampach ^{b,*}, Elizabeth T. Gizewski ^b, Tina C. Wan ^b, Sonia de Castro ^a, Garth G. Brown Jr. ^c, Kenneth A. Jacobson ^{a,**} #### ARTICLE INFO Article history: Received 22 October 2009 Accepted 9 November 2009 Keywords: Nucleoside G protein-coupled receptor Adenosine receptor Radioligand binding #### ABSTRACT A recently reported selective agonist of the human A3 adenosine receptor (hA3AR), MRS5127 (1'R,2'R,3'S,4'R,5'S)-4'-[2-chloro-6-(3-iodobenzylamino)-purine]-2',3'-O-dihydroxy-bicyclo-[3.1.0]hexane, was radioiodinated and characterized pharmacologically. It contains a rigid bicyclic ring system in place of a 5'-truncated ribose moiety, and was selected for radiolabeling due to its nanomolar binding affinity at both human and rat A₃ARs. The radioiodination of the N⁶-3-iodobenzyl substituent by iododestannylation of a 3-(trimethylstannyl)benzyl precursor was achieved in 73% yield, measured after purification by HPLC. [125 I]MRS5127 bound to the human A₃AR expressed in membranes of stably transfected HEK 293 cells. Specific binding was saturable, competitive, and followed a one-site binding model, with a K_d value of 5.74 ± 0.97 nM. At a concentration equivalent to its K_d , non-specific binding comprised 27 \pm 2% of total binding. In kinetic studies, [125]MRS5127 rapidly associated with the hA₃AR ($t_{1/2}$) $_2$ = 0.514 \pm 0.014 min), and the affinity calculated from association and dissociation rate constants was 3.50 ± 1.46 nM. The pharmacological profile of ligands in competition experiments with [125 I]MRS5127 was consistent with the known structure-activity-relationship profile of the hA₃AR. [125]]MRS5127 bound with similar high affinity (K_d , nM) to recombinant A₃ARs from mouse (4.90 \pm 0.77), rabbit (2.53 \pm 0.11), and dog (3.35 ± 0.54) . For all of the species tested, MRS5127 exhibited A₃AR agonist activity based on negative coupling to cAMP production. Thus, [1251]MRS5127 represents a new species-independent agonist radioligand for the A₃AR. The major advantage of [¹²⁵I]MRS5127 compared with previously used A₃AR radioligands is its high affinity, low degree of non-specific binding, and improved A3AR selectivity. © 2009 Elsevier Inc. All rights reserved. #### 1. Introduction Modulation of the A_3 adenosine receptor (A_3AR) is being explored in preclinical and clinical studies for the treatment of a variety of diseases [1,2]. Selective agonists **1** and **2** (Fig. 1) are undergoing clinical trials for hepatocarcinoma, rheumatoid arthritis (phase IIB completed), psoriasis, and dry eye disease [3,4]. Other target diseases for selective A_3AR agonists and antagonists that might be the subject of future clinical trials are neurodegeneration [5,6], inflammatory bowel disease [7], other autoimmune inflammatory diseases [8], and cancer [9]. The level of expression of the A_3AR was found to be elevated in tumors, E-mail addresses: jauchamp@mcw.edu (J.A. Auchampach), kajacobs@helix.nih.gov (K.A. Jacobson). ^a Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States b Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States ^c PerkinElmer Inc., 940 Winter Street, Waltham, MA 02451, United States Abbreviations: AR, adenosine receptor; CHO, Chinese hamster ovary; DMEM, Dulbecco's modified Eagle's medium; IB-MECA, N^6 -(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine; I-AB-MECA, N^6 -(4-amino-3-iodobenzyl)-5'-N-methylcarboxamidoadenosine; MRE 3008F20, 5-N-(4-methoxyphenylcarbamoyl)amino-8-propyl-2-(2-furyl)pyrazolo [4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine; MRS1191, 1,4-dihydro-2-methyl-6-phenyl-4-(phenylethynyl)-3,5-pyridinedicarboxylic acid, 3-ethyl-5-(phenyl-methyl) ester; MRS1220, N-[9-chloro-2-(2-furanyl)]1,2,4]triazolo[1,5-c]puranylol-phenylenzenzeacetamide; MRS1523, 5-propyl-2-ethyl-4-propyl-3-(ethylsulfanylcarbo-nyl)-6-phenylpyridine-5-carboxylate; MRS5127, (1'R,2'R,3'S,4'R,5'S)-4'-[2-chloro-6-(3-iodobenzylamino)-purine]-2',3'-O-dihydroxybicyclo-[3.1.0]hexane; MRS1754, 8-[4-[(4-cyano)phenylcarbamoylmethyl]oxy]phenyl]-1,3-di-(n-propyl)xanthine; NECA, 5'-N-ethylcarboxamidoadenosine; PSB-11, 8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one. ^{*} Corresponding author at: Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States. Tel.: +1 414 456 5643; fax: +1 414 456 6545. ^{**} Corresponding author at: Molecular Recognition Section, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892-0810, United States. Tel.: +1 301 496 9024; fax: +1 301 480 8422. Fig. 1. Structures of nucleoside and non-nucleoside, high affinity ligands for the A₃AR. Compounds 3–6 have previously been prepared in radioactive form for use in receptor labeling studies. neutrophils, and synoviocytes in the disease state [9–12]. The A_3AR expression level correlated to the responsiveness in arthritis patients to therapy with the A_3AR agonist IB-MECA 1 [4]. The most widely used radioligand for the study of the A₃AR is the high affinity agonist [125 I]I-AB-MECA **3** ($K_d \sim 1$ nM at human (h), mouse (m), and rat (r) A_3ARs) [13,14]. The disadvantage of this compound is its low selectivity for the A₃AR. Thus, it is useful for characterization of the A₃AR in cell lines overexpressing the receptor and in various cells expressing the A3AR at high levels, such as eosinophils and neutrophils [15], but not in most native tissues. [3H]HEMADO (2-hexyn-1-yl-N6-methyladenosine), a tritiated radioligand of high affinity and selectivity was reported to be a useful radioligand for the hA3AR and demonstrated to have low non-specific binding [16]. However, the greatly decreased affinity of adenosine agonists at the rat A₃AR in comparison to the human A₃AR has been noted consistently for adenosine analogues substituted at the 6 position with small alkyl moieties and at the 5' and 2 positions with a range of structures [17-20]. Several antagonist radioligands have been used previously in in vitro studies, such as the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivative [3H]MRE 3008F20 4 and the 4,5,7,8-tetrahydro-1Himidazo[2,1-i]purin-5-one derivative [3H]PSB-11 5 [21,22]. The disadvantage of these structurally diverse heterocyclic antagonists is their low affinity for the A₃AR in nonhuman tissue. For example, the affinity of MRE 3008F20 at the rat A_3AR is $>10 \mu M$ [23]. Recently, a ¹⁸F-labeled radioligand, the 6-phenylpyridine derivative 6, suitable for PET (positron emission tomography) studies in both human and murine species was reported [24]. A new approach to designing ligands for the A₃AR that bind selectively to several species homologues of this receptor is based on 5'-truncated nucleoside derivatives. Recently, we have extended this truncation approach to selective A₃AR ligands containing the rigid (N)-methanocarba (bicyclo[3.1.0]hexane) ring system as a ribose substitute [25,26]. This bicyclic ring system maintains a conformation that is preferred at the A₃AR increasing selectivity, even in the absence of a 5'-N-methyluronamide group. Some members of this series were found to have reduced intrinsic activity for the A₃AR or to function as full antagonists [25,26]. One member of this series, the partial agonist MRS5147 7, was labeled with ⁷⁶Br for use as a PET ligand of high affinity [27]. [76 Br]MRS5147 bound to human and rat A₃ARs with K_i values of 0.62 and 5.2 nM, respectively. The corresponding 3-iodo derivative MRS5127 8 also displays high affinity at both the h and r A₃ARs [25,26]. MRS5127 8 was highly A₃AR-selective; its affinity at three human AR subtypes was determined: $hA_1 = 3040 \pm 610 \text{ nM}$, hA_{2A} = 1080 \pm 310 nM, hA_3 = 1.44 \pm 0.60 nM. By Schild analysis of [35S]GTP_YS binding to membranes from CHO cells expressing the hA₃AR, MRS5127 appeared to be an antagonist [25]. However, further analysis determined that it is a partial agonist stimulating cAMP production in transfected cells with 45% efficacy compared to the full agonist NECA [26]. In this study, we have synthesized a radioiodinated form of this truncated rigid carbocyclic nucleoside derivative for in vitro studies and have characterized its binding properties at the A₃AR in several species. #### 2. Materials and methods #### 2.1. Chemical synthesis #### 2.1.1. Materials and instrumentation Hexamethyltin and other reagents, including pharmacological agents, were purchased from Sigma–Aldrich Chemical Company (St. Louis, MO), except where noted. MRS5127 **8** was prepared as reported [25]. Sodium [125 I]iodide (17.4 Ci/mg) in NaOH (1.0 × 10^{-5} M) was supplied by PerkinElmer Life and Analytical Science (Boston, MA). 1 H NMR spectra were obtained with a Varian Gemini 300 spectrometer using CDCl₃ and CD₃OD as solvents. Chemical shifts are expressed in δ values (ppm) with tetramethylsilane (δ 0.00) for CDCl₃ and water (δ 3.30) for CD₃OD. TLC analysis was carried out on aluminum sheets precoated with silica ### Download English Version: # https://daneshyari.com/en/article/2513710 Download Persian Version: https://daneshyari.com/article/2513710 <u>Daneshyari.com</u>