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a b s t r a c t

A formulation applicable to free, periodic, geometrically non-linear vibrations of thin shallow shells made
of composite layers with curvilinear fibres is presented. The modes of vibration of this type of Variable
Stiffness Composite Laminated (VSCL) shallow shells are examined in the non-linear regime. Due to
the membrane effects and their coupling with bending, the modes of vibration of VSCL shells are more
affected by alterations in the curvilinear fibre paths than what was previously found to occur in plates.
Indeed, it is discovered that by changing one of the parameters that defines the fibre path – keeping
all other properties of the shells unaltered – the degree of softening can be changed, hardening can
become softening, the vibration displacement amplitude at which turning points occur can change and
the amplitudes of harmonics vary. A significant deduction, which results from the numerical tests, is that
modes of vibration that have mode shapes with more half-waves are less likely to experience softening. A
geometric explanation for this behaviour, which does not apply only to VSCL shells, is given.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite material panels can be manufactured, with precision
and repeatability, using Automated Fibre Placement (AFP)
machines [1,2]. With AFP technology it is possible to dispose fibres
along a curvilinear path. By curvilinear fibres in shells, it is meant
that the fibres would still be curvilinear if the shells were flat.
These manufacturing capabilities allow to implement new
composite laminated designs, which have as distinctive feature
the fact that the stress–strain constitutive relation is not constant
in space. This type of composites belongs to a group of Variable
Stiffness Composite Laminates (there are other ways of achieving
VSCL, as varying the number of plies or the fibre volume fraction
[3], but these are not considered here).

The modes of vibration provide an important insight about the
dynamic characteristics of any system; by knowing the non-linear
modes of vibration, one identifies where resonances are expected
and if the structure experiences softening or hardening. Modes of
vibration of VSCL plates were analysed in the linear regime in
reference [4], and in the non-linear regime in references [5,6]. This
paper addresses the modes of vibration of shells reinforced by
curvilinear fibres, in the geometrically non-linear regime.
Conservative systems are considered here. Each non-linear mode

of vibration is determined by a natural frequency, its harmonics
and a mode shape, which depend upon the vibration displacement
amplitude [7–11].

An original formulation applicable to thin, laminated
composite, cylindrical, shallow shells with curvilinear fibres is
implemented. This formulation adopts a p-version finite element
type strategy [11], followed by modal reduction using the mode
shapes of vibration of the linear regime. The validity of the
approximation proposed is put to test in numerical comparisons
with data published by other authors. However, because this is
the first study on non-linear modes of VSCL shells, comparisons
are made with data published on other structural elements, as iso-
tropic shells and VSCL plates.

Numerical tests are carried out on VSCL shells, and the effect
that the fibre path has on the modes of vibration – chiefly, but
not only, on the backbone curves – is investigated. It is verified that
using curvilinear fibre paths can strongly affect the modes of
vibrations in the geometrically non-linear regime, with conse-
quences as large as turning softening spring effect into hardening,
or changing the vibration amplitudes at which turning points
occur.

2. Formulation

Open, cylindrical shells as the one represented in Fig. 1 are here
analysed; therefore, the first principal radius of curvature is 1. If
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the second principal radius of curvature is represented by R, the
undeformed middle surface of the shell can be defined with good
approximation, provided that R > x [12], by

wiðx; yÞ ¼ � x2

2R
ð1Þ

Displacements are defined from this reference surface. We
notice – this will be important later on to understand the effect
of the fibre orientation on the vibrations - that parallel circles
and principal normal sections are located in planes parallel to
plane xz. The radius of parallel circles is in this paper represented
by R. The terminology used here in relation with geometric proper-
ties of shells is the one of reference [13], which can be consulted
for more details.

In shallow shells, Cartesian coordinates can be adopted and
both Lamé parameters are 1, leading to rather simple kinematic
relations [14]. For the shell to be shallow, the raise should be small
in comparison with the spans, that is (owi(x, y)/ox)2� 1. We follow
references [14–16], according to which a shell can be considered to
be shallow if R P 2a, corresponding, in the cases here considered,
to ð@wiða=2; yÞ=@xÞ2 6 0:0625. Numerical tests in [17] indicate that
the natural frequencies of a shell where R = 2a can be accurately
computed by a shallow shell formulation.

The formulation here presented is of the equivalent single-layer
type [18] and employs Kirchhoff–Love’s hypothesis [13,19]. A
parentheses is here made, to point out that readers interested in
an analysis on the particularities of diverse theories applied to
non-linear vibrations of laminated, circular cylindrical, closed
shells reinforced with straight fibres, can consult reference [20],
where forced vibrations are analysed. This analysis is continued
in reference [21], where internal resonances in the same type of
shells are investigated, using one of the theories discussed in
[20]; forced vibrations are again of interest and it is shown that
the effect of internal resonances can be very important. In an
earlier work on nonlinear vibrations of isotropic and orthotropic
laminated circular cylindrical, closed shells [22], different analyti-
cal–numerical models are employed. It is also found that modal
interactions may significantly influence the non-linear vibrations.
If [20–22] are devoted to closed shells, in reference [23] forced
non-linear vibrations of composite laminated, open, shallow shells,
with ‘‘straight’’ fibres were investigated. The analysis performed in
[23] leads to the conclusion that Kirchhoff–Love’s hypothesis
generally originates reasonably accurate predictions of periodic
non-linear oscillations of thin shells.

The displacement components in the x, y and z directions,
respectively represented by u(x, y, z, t), v(x, y, z, t) and w(x, y, z,
t), are given by

uðx; y; z; tÞ ¼ u0ðx; y; tÞ � zw0
;xðx; y; tÞ

vðx; y; z; tÞ ¼ v0ðx; y; tÞ � zw0
;yðx; y; tÞ

wðx; y; z; tÞ ¼ w0ðx; y; tÞ
ð2Þ

The unknowns of the vibration problem are the three displace-
ment components – in directions x, y and z – at the middle surface,
indicated by superscript 0. These displacement components are
written as

u0ðn;g; tÞ
v0ðn;g; tÞ
w0ðn;g; tÞ
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Symbols n and g represent non-dimensional, local coordinates;
ffi(n, g) are vectors of shape functions and qi(t) are vectors of gen-
eralised displacements (with i = u, v, w). This formulation can be
categorised as of the p-version finite element type. Contrasting to
the h-version of the FEM, the mesh of p-version finite element
models is not changed when refining the model; instead, the
number of shape functions and generalised coordinates over an
element is [26]. The shape functions chosen in this work were
already tested in several other applications, including [8–12,27–
30]; references [8] or [28], for example, may be consulted for more
details on these functions. The set of shape functions is said to be
hierarchic, because the finite element space Sp�1, spanned by
polynomial basis functions with degree up to p � 1, is embedded
in the space Sp, spanned by shape functions up to degree p. The
reasons that make p-version formulations interesting are: superior
convergence rates in many problems [26]; p-elements are not
prone to shear locking [9,26] (even if shear locking is not at all
an issue here, because Kirchhoff hypothesis is adopted); when
the geometry is simple, as occurs here, a single element is enough,
discarding the element assemblage step.

If moderately large displacements are considered, the relation
between strains and displacements can be written as [14]:
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Fig. 1. Representation of an open cylindrical surface, Cartesian reference axis (x, y, z), curvature radius (R), length (a) and width (b) of the projected planform.
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