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a b s t r a c t

A semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering
initial geometric imperfections and various loads and boundary conditions is presented. The formulation
is developed using the Classical Laminated Plate Theory (CLPT) and Donnell’s equations, solving for the
complete displacement field. The non-linear static problem is solved using a modified Newton–Raphson
algorithm with line-search. A numerical integration scheme for the non-linear matrices is proposed and
details regarding the implementation of the proposed method are given. Two methods to include mea-
sured imperfections into the analyses are presented and for one method the effect of using different
approximation levels for the imperfection field on the non-linear response is investigated, and a mini-
mum approximation accuracy that should be used is determined. The semi-analytical results are verified
using finite elements and previous models from the literature. The implemented routines are distributed
on-line and are based on a matrix notation simply applicable to other problems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Geometric and load imperfections are among the most signifi-
cant parameters affecting the load carrying capacity of cylinders
and cones, as already recognized by the first authors dealing with
the topic, e.g. Southwell [1]. Koiter [2] and Donnell and Wan [3]
were probably the first authors to accurately take into account
the effect of initial geometric imperfections on the non-linear
buckling behavior of isotropic cylinders, having developed their
contributions independently. Koiter’s studies and later Almroth
[4] studies were limited to axisymmetric imperfections, usually
limited to vanishingly small imperfection amplitudes [5]. The
increasing application of composite structures, especially for aero-
space and space structures motivated the development of more
refined theories applicable to orthotropic materials. In this context,
Tennyson [6] presented a thorough review about the first studies
developing semi-analytical models for orthotropic materials, all

of them constraining the equations for symmetric or anti-symmet-
ric laminates. Simitses et al. [7] are among the first authors inves-
tigating the effect of initial imperfections for composite cylinders,
followed by Arbocz [8] and Yamada et al. [9]. For conical shells
the studies of Goldfeld et al. [10] and Goldfeld [11] are among
the most relevant taking into account an initial imperfection field
using Koiter’s theory with the asymptotic expansion of Budiansky
and Hutchinson [12] and assuming a geometric imperfection pro-
portional to the critical buckling mode. Sofiyev and Kuruoglu
[13] use a modified Donnell-type of equations and propose an ana-
lytical solution for the axial buckling of laminated cones restricted
to orthotropic laminates, which results in the limitations already
pointed out in Castro et al. [14].

The approaches proposed by Arbocz [8] and Yamada et al. [9],
among the references above listed, not limited to symmetric or axi-
symmetric shaped imperfections. The harmonic function proposed
by Yamada et al. [9] to approximate the geometric imperfection
field do not include a full Fourier series for the circumferential
coordinate, and therefore the function is not capable to represent
a general imperfection pattern such as those presented by Degen-
hardt et al. [15]. Arbocz’s approach has the potential to investigate
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the imperfection sensitivity of isotropic and composite shells for
various load conditions and using a general imperfection shape,
but the studies presented in Ref. [8] are also limited to axisymmet-
ric imperfections and the effects of different boundary conditions
are not included.

Castro et al. [16] compared the effect of different imperfection
patterns on the non-linear buckling response of cylindrical shells
showing that axisymmetric and buckling mode-shaped patterns
can be treated as worst-case imperfections leading to the smallest
load carrying capacity when compared to measured geometric
imperfections. Hence, in order to avoid overly-conservative predic-
tions, it is desirable to take into account more realistic measured
imperfection patterns, especially with the growing application
of modern measurement systems to obtain such imperfection
patterns [17].

In the present study three cylinders presented by Degenhardt
et al. [15] and their corresponding measured imperfection patterns
are selected and evaluated with the proposed semi-analytical
model and with finite elements. The analytical part of this method
consists on the integration of the linear stiffness matrices, while
the non-linear stiffness matrices and the solution of the non-linear
system of equations are performed numerically.

For the semi-analytical model the half-cosine function proposed
by Arbocz [18] is applied to approximate the imperfection field,
and for the finite element model additionally to the half-cosine
function an inverse-weighted interpolation presented in Ref. [16]
is used. Due to the limited imperfection data for conical shells
the imperfections from the cylinders were mapped to a conical
shell in order to verify the accuracy of the proposed method for
cones. Different levels of accuracy are used to approximate the
imperfections in order to investigate the effect of this measure
on the calculated buckling loads. The proposed semi-analytical
model uses the Classical Laminated Plate Theory (CLPT) and the
Donnell’s equations to solve the full displacement field for axial
compression, torsion and pressure loads under several classical
boundary conditions.

2. Geometric imperfection model

2.1. Measured imperfection patterns

Degenhardt et al. [15] presents a stochastic study where ten
replicates of cylinder Z07 presented by Hühne et al. [19] were
manufactured and tested. The corresponding geometric imperfec-
tions were measured using a photogrammetric system ATOS
(automatic transformer observing system) [17], which has a
precision of about 0.02 mm, producing an imperfection data that
consists on a text file containing the spatial position of the
measured points. Among the tested cylinders three are selected
for the present study: Z23, Z25 and Z26; with the geometric data
and material properties shown in Tables 1 and 2, where R1 is the
radius at the bottom edge, H is the height and a the cone semi-
vertex angle. For cylinders Z23, Z25 and Z26 the imperfection data
contains 341,009, 340,357 and 331,307 points, respectively, and a
representation of the measured imperfection patterns for the
cylinders is given in Fig. 1, with the amplitude n varying from

nmin = �0.211 mm (dark blue) to nmax = + 0.211 mm (dark red). A
small length between 5 and 10 mm at each side, close to the edges,
is not covered by the measurement system such that in all cases
the imperfection pattern is stretched to fit the total length of
500 mm.

2.2. Approximating the imperfection field

Arbocz [18] proposed a half-wave cosine function for the imper-
fection field, which can be written as:

w0 ¼
Xn0

j¼0

Xm0

i¼0

cos
ipx
L

� �
ðAijcosðjhÞ þ BijsinðjhÞÞ ð1Þ

where Aij and Bij are the amplitudes of the corresponding functions.
The derivatives w0,x and w0,h used in the non-linear kinematic
equations are:
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� ip
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sin
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The coefficients Aij and Bij are calculated based on measured
data using for example a linear least-squares algorithm. In theory,
m0 and n0 can be chosen for any required accuracy, but in practice
the least-squares algorithms require a high amount of computer
memory, limiting the maximum values for m0 and n0. In the pres-
ent study it is proposed that an optimal relation between m0 and n0

can be found such that the approximation functions achieve a
higher accuracy for the same required memory, assuming that
the measured imperfections have the same pattern along x and h.
For the three measured samples (Z23, Z25 and Z26) the following
geometric ratio holds: 2pR1/H � 3, and from Eq. (1) it can be seen
that the cosine functions of x have the half the frequency than the
trigonometric functions of h, such that a good approximation is
expected with n0 � (3/2) �m0 and no accuracy gain would be
obtained using a higher m0/n0 ratio. For a general structure the
relation given in Eq. (3) can be used, where R1 and R2 are respec-
tively the bottom and top radii:

n0 ¼
pðR1 þ R2Þ

2H
m0 ð3Þ

A second strategy that allows more accurate approximations for
w0 is the use of reduced sample sizes when treating the measured
imperfection data. As already mentioned, for cylinders Z23, Z25
and Z26 the imperfection data contains 341,099, 340,357 and
331,307 points, respectively, such that using double precision (64
bits for each entry) will result in a coefficient matrix of size =
m0 � n0 � 5.4 MB, which would limit the maximum number of

Table 1
Geometric and laminate data.

Cone/cylinder name References R1 (mm) H (mm) a(degrees) Ply thickness (mm) Lay-up from inwards to outwards

Z23 [15] 250 500 0 0.1195 (+24/�24/+41/�41)
Z25 [15] 250 500 0 0.1170 (+24/�24/+41/�41)
Z26 [15] 250 500 0 0.1195 (+24/�24/+41/�41)
C02 None 400 200 45 0.125 ðþ30=� 30=� 60=þ 60=�0Þ a;b

S

a Middle plies marked with a bar, e.g.: �0.
b The subscript S indicates a symmetric lay-up.

Table 2
Material properties.

Reference E11 (GPa) E22 (GPa) m12 G12 (GPa) G13 (GPa) G23 (GPa)

[15] 142.50 8.700 0.28 5.100 5.100 5.100
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