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a b s t r a c t

A computationally efficient framework is presented to design fibre steered laminates in cylindrical shells,
stiffened with longitudinal stiffeners, optimally. The framework is comprised of a semi-analytical analy-
sis approach and a multi-step optimisation framework, and is applied for maximum buckling capacity
design of fibre steered laminates of two stiffened cylinders, with different thickness to radius ratios,
under bending moment. If the maximum buckling capacity designs are material failure critical, strength
is imposed as a constraint in the optimisation problem. Comparisons of buckling capacity of steered fibre
laminates with those of straight fibre laminates are shown and validated. Finally, to gain in-depth under-
standing of the way buckling capacity is improved by fibre steering, the axial section load and the critical
buckling modes of straight and steered fibre laminates are compared.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Variable stiffness, VS, design of composite laminates through
fibre steering using automated fibre placement machines has fur-
ther extended the traditional design boundaries allowing to use
the directional properties of composites optimally [1]. VS laminate
design requires advanced modelling, analysis and optimisation
techniques, some of which are reviewed in reference [2]. In prac-
tice, thin laminated structures are usually reinforced with stiffen-
ers, however, the amount of research on VS laminated stiffened
structures is limited. In one of the rare studies, Coburn et al. [3]
develop an analytical method for the buckling analysis of a novel
blade stiffened VS laminate which is suitable for future research
on the design and optimisation of such laminates.

Steered fibre cylindrical shells have been the subject of several
studies [4–8]. The authors have developed a computationally effi-
cient framework to optimally design steered fibre laminated cylin-
drical shells with general cross-sectional geometry [9]. The
framework includes a semi-analytical finite difference (SAFD) tech-
nique for static and buckling analysis of unstiffened cylindrical
shells with arbitrary cross-sections. Compared to full finite ele-
ment analysis, the SAFD technique reduces the analysis time
through a reduction of number of degrees of freedom (DOFs);
and is thus suitable for optimisation purposes. In this paper, the
SAFD technique is extended to longitudinally stiffened cylindrical
shells and the design framework is implemented to design two

stiffened cylinders with steered fibre laminates. The obtained
designs are investigated to achieve a better understanding of the
interaction between the stiffeners and fibre steering patterns and
reveal the mechanisms through which fibre steering improves
structural performance in the presence of stiffeners.

2. Analysis

The static and buckling problems of longitudinally stiffened
cylindrical shells are formulated variationally from the total poten-
tial energy of the cylindrical shell and the stiffeners. The total
potential energy has to be expressed in terms of the DOFs of the
unstiffened cylindrical shell, therefore the stiffener-shell kinematic
relations must be determined.

2.1. Stiffener-shell kinematic relations

A typical cross-section of a stiffened cylindrical shell is depicted
in Fig. 1. Assuming that the stiffeners are perfectly bonded to the
cylindrical shell and their cross-section is rigid, the translational,
us;vs;ws, and rotational, hs

b; h
s
a; h

s
n, DOFs of any point on the stiffener

cross-section are related to the corresponding, u;v ;w; hb; ha; hn,
DOFs of the reference point on the middle surface of the cylindrical
shell through the following equations:
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where bs and zs are the distances of the point on the stiffener cross-
section from the reference point on the middle surface of the cylin-
drical shell in the ib and in directions. The drilling DOF is not defined
for the shell and hence hs

n ¼ hn ¼ 0.
The state of strain in the longitudinal stiffeners under extension,

bending and torsion is constant along the beam and can be
expressed in terms of the strain state of the reference point on
the middle surface of the cylindrical shell by using Eq. (1) and
Sanders’ strain–displacement relations [9]:
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where �a;ja;jn and s are the axial strain, changes of curvature
around the ib and in directions, and twist, respectively, and R is
the radius of curvature of the cylinder in the ib direction at the ref-
erence point.

2.2. Static analysis

The strain energy of a stiffener is formulated as:
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where L and As are the stiffener length and cross-sectional area, E
and G are the normal and shear elastic moduli. In Eq. (3), �s

n is the
strain in the normal direction to the cross-section induced by exten-
sion or compression and bending and �s

s is the shear strain induced
by torsion, defined as:
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where rl is the distance between the centroid of the stiffener cross-
section and the selected point on the stiffener cross-section and yl is
the component of rl in the in direction of the local coordinate system
in Fig. 1. For composite laminated stiffeners E ¼ 1=ðA��1Þ11 and
G ¼ 1=ðD��1Þ66 where A� ¼ ð1=hÞA;D� ¼ ð12=h3ÞD and h is the lami-
nate thickness. Using Eq. (2) and Sanders’ strain–displacement rela-
tions [9], the stiffener strain state is expressed in terms of the DOFs
of the shell at point j;Uj:
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where Bs
j and Uj are defined in Appendix A.

Using Eqs. (4) and (5) in Eq. (3), the potential energy of a stiff-
ener attached to the jth discretisation point on the shell is
expressed as:
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where Q s
x and Q s

y are the first moments of area of the stiffener cross-
section about ib and in, respectively, which are equal to zero since
the local coordinate system is placed on the centroid of the stiffener
cross-section, Is

x; I
s
y and Is

xy are the second moments of area and Js is
the polar moment of area of the stiffener cross-section. The stiffness
matrix from the contribution of this stiffener is:
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As described in Appendix A, the ks matrices from all the stiffeners
are assembled into the stiffness matrix of the cylindrical shell [9],
K, to build the stiffness matrix of the stiffened shell.

2.3. Buckling analysis

The eigenvalue buckling problem is formulated by assuming
moderately large rotations for the shell mid-surface and adding
the von Karman nonlinear term to the normal strain. Therefore,
the stiffener strain energy is:
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Using Eq. (2), Sanders’ strain–displacement relations [9] and assum-
ing sinusoidal variation in the axial direction, m [9], the stiffener
strain state is expressed in terms of buckling DOFs of the shell at
point j; aj:
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where Gs
j ;C

s
j and aj are defined in Appendix B, i is the imaginary unit

and a is the axial surface parameter [9].
Using Eqs. (4) and (9) in Eq. (8), the potential energy of a stiff-

ener attached to the jth discretisation point on the cylinder
cross-section is:
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Taking the second derivative of the strain energy of the stiffener
gives rise to the following material and geometric stiffness
matrices:
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These matrices will be assembled at the discretisation point j to the
global material, Km, and geometric, Kg , stiffness matrices as
explained in Appendix B.

3. Multi-step optimisation framework

Based on initial work by IJsselmuiden et al. [10] to design a
multi-patch laminated panel, a multi-step optimisation framework

Fig. 1. The cross-section of a stiffened cylinder, DOFs of the reference point on the
shell middle surface and DOFs of the stiffener centroid.
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