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a b s t r a c t

In this paper, a re-look into the upper and lower bound solution to the buckling of composite columns is
presented in details and this includes the complete derivation of the expressions for the kinematical com-
patibility conditions. Included in this contribution are also the results of the current finite element sim-
ulation together with the results of the experiments. Moreover, further investigations are conducted to
test whether the proposed three methods of calculating the effective flexural stiffness can be employed
in cooperation with the developed mathematical model to form the desired upper and lower bounds for
the buckling loads of both the perfect and single-delaminated fiber-reinforced composite beams for the
various parameters that are studied. In these analyses, single-delaminated fiber-reinforced composite
beams which consist of random ply-orientations and stacking sequences are employed to put up a strin-
gent test on the generalness and applicability of these three methods. It is observed that for all the cases
that were examined, these three means of evaluating the effective bending modulus of a fiber-reinforced
composite beam pass are validated.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The fiber-reinforced composite materials are used widely
because of their high strength-to-density and stiffness-to-density
ratios as compared with most metals. This is especially true in
aerospace industries such as space applications, the making of mil-
itary and civil aircrafts, where weight saving is very important.
Other areas include automotive and sports applications. Further-
more, the cost of fiber-reinforced composite materials has
decreased over the years. This is due to the increased manufactur-
ing experience accumulated over the years and more effective
manufacturing technologies for mass production. However,
fiber-reinforced composites are well known to be susceptible to
delamination. Once delamination occurs in the composite lami-
nate, stresses within the composite laminate will be redistributed.
This will then lower the compressive load carrying capacity of the
composite laminate. The causes for occurrence of delamination
include the high inter-laminar stresses at the free edge, impact
and fabrication defects.

A lot of researchers have investigated on the effects of delami-
nation on the critical load of both isotropic and fiber-reinforced

composite laminates. Simitses [1] and Simitses et al. [2] created a
one-dimensional model to simulate a laminate plate with a
through width delamination. This model was believed to be suffi-
cient to describe the behavior of the laminate plate. Simitses [1]
also considered delamination growth while Simitses et al. [2] uti-
lized the thin-film analysis for comparison. Kapania and Wolfe
[3] examined the buckling behavior of a beam-plate with two del-
aminations of equal length, one above the other. The delaminations
were also taken to be through-the-width. Lee et al. [4] employed
the layer-wise theory to examine the buckling behavior of a
beam-plate with multiple delaminations under compression. Lim
and Parsons [5] developed a numerical model in their paper to cal-
culate the buckling load of a composite beam with multiple delam-
inations quickly, in which both the Lagrange multipliers and
Rayleigh–Ritz energy method were employed. Shu [6] utilized
the classical beam theory to model a beam with double delamina-
tions into five interconnected segments. Furthermore, two coordi-
nate systems were used and the gradient was utilized as the
unknown, which greatly decreased the complexity of the solution.
Wang et al. [7] used a continuous analysis to examine the buckling
loads of delaminated beams and plates. The Stoke’s transformation
technique was used to investigate the buckling behavior of
clamped and simply supported orthotropic beam-plates. Gaudenzi
[8] employed a classical nonlinear finite element method utilizing
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the linearized buckling analysis to examine the delamination
buckling in practical applications. Huang and Kardomateas [9]
employed suitable kinematical continuity conditions, equilibrium
equations and boundary conditions with the linearized nonlinear
differential equation to derive a closed form solution for a plate
with two delaminations. Kim and Hong [10] studied both cases
of composite laminate with either a through-the-width or an
embedded delamination. In addition, both buckling and post-
buckling were examined. A geometrically nonlinear finite element
analysis was used in the post-buckling state of the laminate to deal
with the geometric complexity and large deformation. Lifshitz and
Gildin [11] conducted experiments to investigate how the carbon/
epoxy composite beam behaved under cyclic compressive loading.
Firstly, the effect of a delamination on the fatigue life was studied.
Then, the respond of the composite beam from the initial cyclic
compressive loading to failure was examined. Kyoung et al. [12]
examined the buckling and post-buckling behaviors of laminates
with multiple through-the-width delaminations in their paper.
Furthermore, these delaminations were modeled in a more realis-
tic configuration. Kyoung et al. [13] studied both one-dimensional
composite laminates with multiple through-the-width delamina-
tions and two-dimensional cross-ply composite laminates with
circular delaminations. Jones [14] published an excellent book on
both the micromechanics and macromechanics aspects of fiber-
reinforced composite materials and structural phenomena. Naik
and Ramasimha [15] explored the buckling behavior of the typical
woven fabric composites with a central delamination under axial
compression. The classical lamination theory, equilibrium of forces
and finite element analysis were involved in their approach. Parla-
palli and Shu [16] examined the buckling behavior of a beam that
was made of two different materials with an asymmetry delamina-
tion. New non-dimensionalized parameters, axial and bending
stiffnesses and effective-slenderness ratio were introduced. Yap
and Chai [17] employed two methods of computing the effective
flexural stiffness into a mathematical model to predict the buckling
load of fiber-reinforced composite beam with a single delamina-
tion. Both linear and nonlinear finite element simulations were
performed. Yap and Chai [18] derived a closed form expression
to calculate the effective flexural modulus of a fiber-reinforced
composite beam. Then, together with the two ways of determining
the effective flexural stiffness used by Yap and Chai [17] in their
earlier work, they managed to come up with the upper and lower
bounds for the buckling loads of both the perfect and single-
delaminated composite beams. Chai and Yap [19] applied the same
effective flexural stiffness closed formed solution to investigate the
effect of various coupling terms on the bending, buckling and free
vibration of perfect fiber-reinforced composite laminated beam.
Chai et al. [20] further looked into the structural responses of a
perfect fiber-reinforced composite beam under both axial force
and combined axial plus transverse loads for the first time.

In view of queries for the use of incremental forces in the
analytical model, an attempt has been made here to explain
the utilization of these incremental forces in the formulation of
the mathematical model in detail with illustrations. Moreover,
for both Refs. [17,18], the finite element simulation results were
used to verify their different methods of computing the effective
flexural modulus of a fiber-reinforced composite beam without
proper substantiation. Hence, in this paper, both the experiments
and relevant results from other authors are included to validate
their way of performing the finite element simulations. Thirdly,
all the cases from Refs. [17–20] only consisted of specially ortho-
tropic, with at most anti-symmetric fiber-reinforced composite
beams. Therefore, this paper tries to look into fiber-reinforced
composite beams with more general ply-orientations and stacking
sequences. This is important because for specially orthotropic and
anti-symmetric scenarios, various coupling terms will become

zero. This will introduce ambiguity in the usage of the effective
flexural stiffness expressions to form the desired upper and lower
bounds proposed by Yap and Chai [18]. Moreover, as the closed
form formula to calculate the effective flexural modulus of a
fiber-reinforced composite beam developed by Yap and Chai [18]
and further examined by Refs. [19,20] caters for all the coupling
terms in the classical lamination theory, one has to consider the
proposed more universal cases in order to put a more stringent test
on the applicability of the derived closed form equation to prove its
generalness.

2. Mathematics

In this section, the classical lamination theory, the three formu-
lae employed by Refs. [17–20] to compute the effective flexural
stiffness of a fiber-reinforced composite beam and the analytical
model that can be utilized to work out the buckling load of a
single-delaminated fiber-reinforced composite beam will be
addressed.

2.1. Classical lamination theory

Jones [14] reveals that in the framework of classical lamination
theory, the force and moment resultants can be worked out to be:
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The membrane strains are defined as
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and curvatures as
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The Aij are extensional stiffnesses, Bij are bending extension cou-
pling stiffnesses and Dij are bending stiffnesses. They are evaluated
as:

Aij ¼
XN
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Fig. 1 illustrates how the zk�1 and zk are defined. The ðQijÞk in equa-
tions (5)–(7) are the transformed reduced stiffnesses of the kth layer.
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