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a b s t r a c t

The nonlocal Timoshenko beam theories (TBTs), based on the Reissner mixed variational theorem (RMVT)
and principle of virtual displacement (PVD), are derived for the analysis of a single-walled carbon
nanotube (SWCNT) embedded in an elastic medium and with various boundary conditions, in which
the Eringen nonlocal elasticity theory is used. The strong formulations of RMVT- and PVD-based nonlocal
TBTs and their associated possible boundary conditions are presented. The interaction between the
SWCNT and its surrounding elastic medium is simulated using the Pasternak foundation model. The gen-
eralized displacement and force resultant components induced in the loaded SWCNT are obtained using
the meshless collocation method, in which the shape functions of the primary variables are constructed
using the differential reproducing kernel (DRK) method. The results show that RMVT-based nonlocal TBT
is superior to its PVD-based counterpart in that the convergent rate of the RMVT-based nonlocal TBT is
faster than that of the PVD-based one, that the predictions of generalized force resultants obtained using
the RMVT-based nonlocal TBT are more accurate than those obtained using the PVD-based nonlocal one,
and that the highest order of the base functions used in the RMVT-based nonlocal TBT is lower than that
used in the PVD-based one.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their superior stiffness, strength and conductivity
properties, carbon nanotubes (CNTs) have been widely used for
various nanotechnology applications since their discovery in
1991 [1], such as nanoprobes, nanoactuators, gene delivery
systems and reinforcements in polymer composites [2–4].
Comprehensive studies of the structural behaviors of CNTs thus
become an important research subject to enhance the performance
and lifetime of the related composite devices.

Atomistic modeling is both time consuming and expansive, and
nonlocal continuum mechanics thus provides an attractive alterna-
tive approach to investigate the static behaviors and dynamic
responses of nano-scaled structures, such as CNTs. According to
Eringen nonlocal elasticity theory [5–8], nonlocal continuum
mechanics mainly differs from local continuum mechanics in that
the stresses at a typical material point induced in a loaded elastic
body will depend on the strains at only that material point in the
latter, while these will depend on all material points in the elastic

body in the former due to the small length scale effect. This means
that at the nano-scale the lattice spacing between individual atoms
becomes increasingly important, and the discrete structure of the
material can no longer be homogenized into a continuum. A vari-
ety of nonlocal structural models, based on the Eringen nonlocal
constitutive relations, have been developed for the static and
dynamic analyses of CNTs with and without being embedded in
a polymer matrix, and reviewed in the open literature [9–12], such
as the nonlocal Euler–Bernoulli beam theory (EBT), nonlocal Timo-
shenko beam theory (TBT), nonlocal Levison beam theory (LBT),
Reddy’s [13] and Thai’s [14] nonlocal refined beam theories (RBTs)
and nonlocal sinusoidal beam theory (SBT) [15], with the nonlocal
TBT being more widely used than the others, in which Thai’s non-
local RBT differs from Reddy’s nonlocal RBT in that the total normal
displacement component is separated into the shear and bending
parts. The literature survey carried out in this article will thus focus
on the nonlocal TBT-based static and dynamic analyses of CNTs.

Wang et al. [16,17] investigated the bending and buckling of a
single- or doubly-walled carbon nanotubes (SWCNTs or DWCNTs)
with various boundary conditions using the TBT combined with
the Eringen nonlocal constitutive relations for an elastic body, in
which the shear deformation and small-scale effects were
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considered. The Euler–Lagrange equations and the possible bound-
ary conditions were derived using the principle of virtual displace-
ment (PVD). The free vibration responses of an SWCNT with
different boundary conditions were studied by Ansari and Sahmani
[18] using various PVD-based nonlocal classical beam theories in
conjunction with the differential quadrature (DQ) method and a
molecular dynamics (MD) simulation. Through the fitting of the
numerical results of the DQ and MD methods, the appropriate val-
ues of the nonlocal parameter (i.e., the length scale parameter) for
each nonlocal beam model with different types of chirality and
boundary conditions were recommended. Simsek and Yurtcu [19]
examined the static and buckling behaviors of a simply-supported,
functionally graded (FG) nanobeam on the basis of the nonlocal
TBT and EBT. Based on the nonlocal TBT, Pradhan [20] and Roque
et al. [21] presented the analyses of nanobeams using the finite ele-
ment method (FEM) and the meshless method, respectively. In the
FEM, a weak formulation related to the nonlocal TBT was derived
using the weighted-residual approach, and then was applied to
the corresponding analyses of nano-scaled structures, while in
the meshless method the strong formulation of the TBT was
applied to a series of randomly-scattered sampling nodes and the
shape functions of the primary variables were constructed using
the global and local radial basis functions [22–24]. The results
obtained using the above-mentioned numerical methods were
found to be in excellent agreement with the exact solutions
available in the literature.

Eltaher et al. [25] and Ghannadpour et al. [26] studied the
size-dependent static, free vibration and buckling problems of FG
nanobeams using the EBT combined with the FEM and Ritz
methods, respectively, in which the equilibrium equations were
derived using the PVD, and the material properties of the nano-
beam were assumed to vary through the thickness according to
the power law. Based on the nonlocal TBT, Ke et al. [27] investi-
gated the nonlinear vibration of piezoelectric nanobeams sub-
jected to an applied voltage and a uniform temperature change,
in which a detailed parametric study was undertaken to examine
the influences of the nonlocal parameter, temperature change,
and external electric voltage on the size-dependent nonlinear
vibration characteristics of the piezoelectric nanobeam.

In some nanotechnology applications CNTs are embedded in a
polymer matrix to produce CNT-reinforced polymer composite
structures. The interaction effect between the CNT and its
surrounding elastic medium thus has to be therefore considered
in the assorted mechanical analyses of the CNT. Murmu and
Pradhan [28–30] presented the thermo-mechanical vibration and
thermo-mechanical buckling analyses of an SWCNT embedded in
an elastic medium based on the nonlocal EBT and TBT in conjunc-
tion with the DQ method, in which the Winkler-type and
Pasternak-type foundation models were used to simulate the inter-
action effect between the CNT and its surrounding elastic medium,
and the small scale parameter and the stiffness of the surrounding
medium were demonstrated to significantly affect the critical load
parameters and natural frequencies of the CNT. Based on a
higher-order shear deformation shell theory with von Karman
kinematic nonlinearity, Shen and Zhang [31,32] presented the
buckling and postbuckling analyses of axially compressed
double-walled CNTs, and the results showed that the buckling
and postbuckling behaviors of CNTs are very sensitive to the small
scale parameter.

After a close literature survey, we found that although the non-
local continuum model is a compromise it remains an effective ana-
lytical tool due to its lower cost and time requirements with regard
to the analysis of CNTs with and without being embedded in an
elastic medium. Most of the above-mentioned nonlocal continuum
models are based on the PVD, rather than the Reissner mixed
variational theorem (RMVT) [33,34], even though RMVT-based

theories have been demonstrated to be superior to the PVD-based
ones for the analysis of macro- and micro-scaled structures with
regard to the accuracy and convergence rate by Carrera [35–37],
Carrera and Ciuffreda [38,39] and Wu and Li [40,41], Wu and Chiu
[42] and Wu et al. [43]. In the PVD, the generalized displacements
are regarded as the primary variables subject to variation, while in
the RMVT, these are both the generalized displacements and the
generalized force resultants. According to Eringen nonlocal elastic-
ity theory, the stress–strain (or the generalized force resultant-dis-
placement) relations of an elastic body are expressed in a system of
differential equations, rather than a system of algebraic equations
for the local elasticity theory, so that the natural boundary
conditions cannot be directly imposed in the analysis when the
nonlocal PVD-based continuum models are used. In addition, the
determination of the generalized force resultants involves a numer-
ical differentiation process related to the determined primary
variables, which is time-consuming and always leads to significant
errors.

To the best of the authors’ knowledge, the nonlocal beam theo-
ries for embedded CNTs published in the open literature are almost
based on the PVD, rather than the RMVT. On the basis of the above-
mentioned advantages of RMVT-based theories, in this article an
RMVT-based nonlocal TBT combined with a meshless collocation
method using the differential reproducing kernel (DRK) interpola-
tion [44] is first proposed and developed for the bending analysis
of an SWCNT embedded in an elastic medium and with various
boundary conditions. The interaction between the SWCNT and its
surrounding elastic medium is considered using a Pasternak-type
foundation. The Euler–Lagrange equations of RMVT- and PVD-
based nonlocal TBT resting on a Pasternak foundation and their
associated boundary conditions are derived using the calculus of
variation. The optimal values of the parameters selected in the
implementations of the meshless DRK interpolation method are
examined, such as the highest order of the base functions, and
the radius of the influence zones. A comparative study for the gen-
eralized displacement and force resultant components induced in
the loaded SWCNT obtained using RMVT- and PVD-based is under-
taken. Moreover, a parametric study related to the influences of
some crucial effects on the static behaviors of the loaded SWCNT
is conducted, such as the small scale effect, aspect ratios, different
boundary conditions, and the stiffness of the foundation.

2. The RMVT-based local TBT

2.1. Kinematic and kinetic assumptions

For a moderately thick beam with a length L, in the TBT the
shear deformation effect is considered to be a constant through
the thickness coordinate of the beam, and the related displacement
field is given as follows:

u1ðx; zÞ ¼ uðxÞ � z/ðxÞ; ð1Þ
u2ðx; zÞ ¼ 0; ð2Þ
u3ðx; zÞ ¼ wðxÞ ð3Þ

in which ui(x,z) (i = 1 � 3) denote the displacement components of
the beam in the x, y and z directions, respectively. u (x) and w(x)
stand for the mid-plane displacement components in the x and z
directions, and /(x) is the total rotation in the x � z plane. The
deformation of a section in the y � z plane is shown in Fig. 1(a).

The in-plane and out-of-plane motions of the beam will be
uncoupled when the material properties are symmetric with
respect to the middle plane, and thus the mid-plane displacement
component (u(x)) is discarded in the following derivation.

The strain–displacement relations of the beam are given by
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