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a b s t r a c t

An optimization method to identify the material parameters of composite structures using an inverse
method is proposed. This methodology compares experimental results with their numerical reproduction
using the finite element method in order to obtain an estimation of the error between the results. This
error estimation is then used by an evolutionary optimizer to determine, in an iterative process, the value
of the material parameters which result in the best numerical fit. The novelty of the method is in the cou-
pling between the simple genetic algorithm and the mixing theory used to numerically reproduce the
composite behavior. The methodology proposed has been validated through a simple example which
illustrates the exploitability of the method in relation to the modeling of damaged composite structures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The structural use of composite materials is widespread in
many fields, including civil infrastructures and the aerospace, auto-
motive and marine industries [1]. The high strength-to-weight and
stiffness-to-weight ratios of these materials, in addition to their
corrosion resistance and thermal stability, make them well suited
for structural applications in which weight reduction is a priority.

Composite materials are made of two or more simple materials
or components, typically exhibiting the best qualities of these com-
ponents and, often, superior properties to those of the individual
components alone [2]. In general, composites are designed to meet
certain structural needs. The determination of the overall behavior
of the composite material is key to the design process. Representing
the composite as a single orthotropic material with the averaged
properties of the whole set has proven unsatisfactory. The main
drawback of this approach is that it cannot capture correctly the
behavior of the composite if one or more of its components exceeds
the elastic limits [3]. Hence, composite materials need to be mod-
eled using theories that allow taking into account the behavior of
the simple materials, which can be quite diverse and include anisot-
ropy, plasticity and damage, among other characteristics. One of the

most commonly used is the mixing theory [4], whose general theo-
retical framework was initially developed by Truesdell and Toupin
[5].

The classical mixing theory explains the behavior of a compos-
ite material according to the interaction between the components
of the composite. It is based on the hypotheses that all components
suffer the same strains and each component contributes to the
behavior of the composite in the same proportion as their volumet-
ric participation. Each component is a material in itself whose indi-
vidual behavior can be represented by its own constitutive law.
Thus, the mixing theory can be considered a constitutive equation
manager. This behavior combination technique allows preserving
the original constitutive law of each component, which is espe-
cially useful when studying composite structures with the finite
element method (FEM).

Finite element analysis has proven to be an extremely useful
tool in the design process of composite materials. The use of FEM
for the structural analysis and characterization of composites
offers an insight into its internal behavior in addition to reducing
physical testing and its associated costs. However, the reliability
of the numerical result is heavily dependent on the adequacy of
the input data, with the material parameters of the simple materi-
als playing an important role. Composite manufacturers tend to
report the composite properties as a whole rather than specify
the component’s properties separately [6]. For this reason, correct
parameter identification is an issue which is being addressed more
and more in this field.

http://dx.doi.org/10.1016/j.compstruct.2014.12.014
0263-8223/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Strength of Materials and Structural
Engineering, ETSECCPB, Universitat Politècnica de Catalunya, Barcelona Tech (UPC),
Campus Nord, Building C1. Jordi Girona 1-3, 08034 Barcelona, Spain.

E-mail address: ecomellas@cimne.upc.edu (E. Comellas).

Composite Structures 122 (2015) 417–424

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2014.12.014&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2014.12.014
mailto:ecomellas@cimne.upc.edu
http://dx.doi.org/10.1016/j.compstruct.2014.12.014
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


An optimization method for the determination of material
parameters in damaged composite structures is presented in this
paper. The proposed methodology faces an inverse problem from
a numerical point of view. It adjusts the material parameters of a
composite test specimen with unknown properties but available
experimental results.

The experimental set-up is reproduced in FEM using the in-
house code PLCd [7], with the material properties taking the values
assigned by the in-house optimizer Optimate [8]. The numerical
result is compared with the experimental data to obtain an error
value for the objective function, which is fed back to Optimate.
An l1–norm is used to estimate the error. Then, by means of a
genetic algorithm, Optimate adjusts the material properties until
the numerical result is as close as possible to the experimental one.

Several authors have presented inverse methods for the deter-
mination of material parameters based on the same fundamental
idea as the methodology proposed here. Markiewicz et al. [9] and
Geers et al. [10] first used the inverse approach to determine
parameters for material models of an aluminum alloy and a
glass-fiber reinforced polypropylene composite, respectively. Since
then, several variations and improvements on this method have
been presented, with different authors putting more focus on par-
ticular aspects of the methodology. These include the type of opti-
mization algorithm used [11–13], the objective function defined
[14,15] and the material parameters to identify in the context of
its applications [11,16–19].

The work presented here provides a novel way of identifying
the material parameters which define the components of a com-
posite material. Even with limited experimental data available,
the methodology proposed manages to correctly reproduce
numerically its behavior. The coupling between the constitutive
model and the optimization algorithm is highly flexible and can
be easily adapted to different experimental contexts. In addition,
the mixing theory used to formulate the constitutive model of
the composite is versatile enough to be capable of numerically rep-
resenting distinct types of composites as long as the simple mate-
rials that compose them are correctly characterized.

In the following section, the mixing theory used to numerically
model the composite behavior is detailed, including a brief descrip-
tion of the constitutive models considered for the component
materials. Section 3 describes the optimization method developed
to determine the material parameters of the simple materials
which form a composite. An example which illustrates the utility
of the coupling between the optimization algorithm and the mix-
ing theory in the proposed methodology is provided in Section 4
to validate the method. Finally, the conclusions of the work are
presented.

2. Constitutive modeling

The classical mixing theory assumes strain compatibility as the
closing equation [20]:

�ij ¼ �ij
� �

1 ¼ �ij
� �

2 ¼ � � � ¼ �ij
� �

c ð1Þ

where �ij is the strain of the composite material and the subscript
�ð Þc refers to the c-component of the composite material.

The hypothesis that the contribution of each component is pro-
portional to its volumetric participation is enforced through the
specific Helmholtz free energy:

W ¼
Xn

c¼1

kcWc;
Xn

c¼1

kc ¼ 1 ð2Þ

where n is the total number of components and k is the volume
fraction, which must fulfill the mass conservation principle.

By means of the Clausius-Planck inequality, the secant constitu-
tive equation for the whole composite is obtained in the standard
manner [20–22]:

rij ¼
@W
@�ij
¼
Xn

c¼1

kc
@Wc

@�ij
¼
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kc rij
� �

c ð3Þ

where rij is the Cauchy stress tensor. The expression for the free
energy of each component Wc will depend on the type of constitu-
tive model chosen for each simple material. In this work, the com-
posite being modeled is a carbon fiber reinforced epoxy matrix, so
an anisotropic elasto-plastic constitutive model is proposed for
the fibers and an isotropic scalar damage for the matrix [23]. How-
ever, other constitutive equations could be easily introduced if
required for different type of composites.

2.1. Anisotropic elasto-plasticity

The anisotropic elasto-plastic constitutive model is based on the
generalization of the classical plasticity theory [20,24]. The aniso-
tropic theory used to derive this model [23,25,26] is based on the
concept of mapped stress tensor first introduced by Betten [27].

2.1.1. Plastic damage model
The specific Helmholtz free energy of an elasto-plastic material

is:

W ¼ W e þWp ¼ 1
2
� e

ij Cijkl� e
kl þWp ð4Þ

where We is the specific elastic free energy, Wp is the specific plastic
free energy, Cijkl is the constitutive tensor of the material and � e

ij is
the elastic strain. The total strain is split into an elastic and a plastic
part, following the Prandtl–Reus hypothesis:

�ij ¼ � e
ij þ �

p
ij ð5Þ

Then, the constitutive equation of an isotropic elasto-plastic
material is:

rij ¼
@W
@�ij
¼ Cijkl �kl � �p

kl

� �
ð6Þ

The plastic strain is obtained by means of the flow rule:

_�p
ij ¼ _k

@Gr

@rij
ð7Þ

where k is the plastic consistency factor as derived by Simo and Ju
[28] and Gr is the plastic potential function.

To fully characterize the plastic response, the yield function Fr

must satisfy the yield condition and a plastic hardening law must
be defined. In this case, the expression proposed by Oller [29] is
used:

_jp ¼ hij _�p
ij ð8Þ

where jp is the plastic damage internal variable and hij is a second-
order tensor defined in [29] which requires the definition of a scalar
hardening parameter, H.

2.1.2. Anisotropy theory
Anisotropy is modeled by transporting all the constitutive

parameters of the material and its stress and strain states from a
real anisotropic space to a fictitious isotropic space. This mapping
technique allows reproducing the behavior of the real anisotropic
material by means of a well known and developed constitutive
model of an isotropic material. The two spaces are related through
a linear transformation, using a fourth-order tensor which contains
all the information regarding the anisotropy of the real material. It
is assumed that both spaces have the same elastic strains, which
are related through the strain transformation tensor ae

ijkl:
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