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a b s t r a c t

A size-dependent functionally graded piezoelectric beam model is developed using a variational formu-
lation. It is based on the modified strain gradient theory and Timoshenko beam theory. The material
properties of functionally graded piezoelectric beam are assumed to vary through the thickness according
to a power law. The new model contains three material length scale parameters and can capture the size
effect, unlike the classical beam theory. To illustrate the new functionally graded piezoelectric beam
model, the static bending and free vibration problems of a simply supported beam are numerical solved.
These results may be useful in the analysis and design of smart structures constructed from piezoelectric
materials.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials have been widely used as sensors and
actuators in control systems due to their excellent electro-
mechanical properties, design flexibility, and efficiency to convert
electrical energy into mechanical energy. Traditional piezoelectric
sensors and actuators are often made of several layers of different
piezoelectric materials. Many theoretical and mathematical
models have been presented for laminated composite structures
with piezoelectric sensors and actuators [1–4]. The principal weak-
ness of these structures is that the high stress concentrations are
usually appeared at the layer interfaces under mechanical or
electrical loading. This drawback restricts the usefulness of piezo-
electric devices in the areas where the devices require high
reliability.

In order to overcome the performance limitations of the tradi-
tional layered piezoelectric elements, the concept of functionally
graded materials (FGMs) has been extended into the piezoelectric
materials by recent advances in the metallurgical science and fab-
rication techniques [5]. Due to continuous change in the material
composition and properties, these kinds of advanced materials
are called functionally graded piezoelectric materials (FGPMs).

With the developments in nanotechnology, microbeam, in
which its thickness is generally on the order of microns and

sub-microns, has been extensively used in many applications of
micro- and nano-size devices and systems, such as microsensors
[6], microactuators [7], nano- and micro-electromechanical
systems (NEMS and MEMS) [8]. In such applications, size effects
or small scale effects are experimentally observed [9–12]. Conven-
tional continuum models based on classical continuum theories do
not account for such size effects due to the lack of a material length
scale parameter. Thus, needs exist for the development of
size-dependent continuum models which account for these size
effects.

In general, size-dependent continuum models can be developed
based on size-dependent continuum theories such as couple stress
theory [13], nonlocal elasticity theory [14], and strain gradient
theory [15].

Based on the modified couple stress theory, proposed by Yang
et al. [16], some microstructure-dependent problems had been
solved [17–19]. The modified strain gradient theory proposed by
Lam et al. [20] results from the classical strain gradient theory
[15]. This theory requires three additional material length scale
parameters for linear elastic isotropic materials. Recently, this
modified theory has been employed by many researchers in order
to analyze size-dependent structures. For instance, Kong et al. [21]
and Wang et al. [22] investigated static bending and free vibration
behaviors of Bernoulli–Euler and Timoshenko homogeneous
microbeams, respectively. Static torsion and torsional vibration
analysis of clamped–clamped and clamped-free microbars were
carried out by Kahrobaiyan et al. [23]. Stability and bending
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responses of microbeams with various boundary conditions were
also investigated by Akgöz and Civalek [24,25] on the basis of
Bernoulli–Euler beam model. Akgöz and Civalek [26] developed a
size-dependent sinusoidal shear deformation beam model in
conjunction with modified strain gradient theory. As far as FGM
is considered, Ansari et al. [27] investigated the free vibration
characteristics of FGM microbeams based on strain gradient
Timoshenko beam theory. Akgöz and Civalek [28,29] studied the
buckling and vibration of FGM beam or bar based on modified
strain gradient theory. Zhang et al. [30] developed a novel size-
dependent FGM curved microbeams based on the modified strain
gradient theory and nth-order shear deformation theory. Also,
Ansari et al. [31] studied bending, buckling and free vibration
responses of FGM Timoshenko microbeams based on strain
gradient elasticity theory. Sahmani and Ansari [32] presented
recently the prediction of buckling behavior of size-dependent
FGM third-order shear deformable microbeams including thermal
environment effect using modified strain gradient elasticity theory.

To the best of authors’ knowledge, however, bending and free
vibration of functionally graded piezoelectric beam based on the
modified strain gradient theory have not been considered.

In this work, a size-dependent model for bending and free
vibration of functionally graded piezoelectric beam is developed
using a variational formulation. It is based on the modified strain
gradient theory and Timoshenko beam theory. The new model
contains three material length scale parameters and can capture
the size effect, unlike the classical beam theory. To illustrate the
new piezoelectric beam model, the static bending and free vibra-
tion problems of a simply supported beam are numerical solved.

2. Formulations of FGPMs

Consider a beam made of functionally graded piezoelectric
materials (FGPMs) of length L and thickness h. The beam is
subjected to a mechanical load q, and applied voltage V0 as shown
in Fig. 1.

It is considered that the material properties vary continuously
across the thickness direction according to the power law distribu-
tion. The effective material properties N can be found as:

N ¼ NuVuðx3Þ þ NlV lðx3Þ; ð1Þ

where (Nu,Nl) represent the material properties at the upper and
lower surfaces, respectively, and (Vu,Vl) are the corresponding
volume fractions defined as:

Vuðx3Þ ¼
x3

h
þ 1

2

� �k

; Vlðx3Þ ¼ 1� Vuðx3Þ; ð2Þ

where k(0 6 k 61) denotes the non-negative gradient index.

3. Formulations of modified strain gradient theory

According to the modified strain gradient theory modified by
Lam et al. [20], the strain energy of a linear piezoelectric
continuum occupying region X is written as follows.

U ¼ 1
2

Z
X
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dv ; ð3Þ

where
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vij ¼
1
2
ðhi;j þ hj;iÞ; ð7Þ

hi ¼
1
2
ðcurlðuÞÞi; ð8Þ

Ei ¼ u;i; ð9Þ

where ui, ci, hi and Ei denote the components of the displacement
vector u, the dilatation gradient vector c, the infinitesimal rotation
vector h, and the electric field vector E. Also, the components of the
strain tensor e, the deviatoric stretch gradient tensor g(1), and the
symmetric part of the rotation gradient tensor v are represented
by eij gð1Þijk and vij. The parameters which are obtained by
differentiating the strain energy density with respect to kinematics
parameters e, c, g(1), v and E are respectively, symbolized by r, p,
s(1), m and D. The parameters p, s(1) and m are usually called the
higher-order stresses.

The constitutive equations for the piezoelectric solids may be
expressed as follows.

rij ¼ cijklekl þ eijkEk; ð10Þ
Di ¼ eiklekl þ likEk; ð11Þ
pi ¼ 2ll2

0ci; ð12Þ
sð1Þijk ¼ 2ll2

1g
ð1Þ
ijk ; ð13Þ

mij ¼ 2ll22vij; ð14Þ

where cijkl, eijk and lik are the elastic, piezoelectric and dielectric
coefficients, respectively. l denotes the shear modules. l0, l1 and l2
are the additional independent material length scale parameters
associated with dilatation gradients, deviatoric stretch gradients
and symmetry rotation gradients, respectively.

4. Governing equations and boundary conditions

For a piezoelectric beam, the constitutive equation may be
expressed as follows:

r11 ¼ c11e11 � e31E3; ð15Þ
r13 ¼ 2c55e13 � e15E1; ð16Þ
D1 ¼ 2e15e13 þ l11E1; ð17Þ
D3 ¼ e31e11 þ l33E3: ð18Þ

Based on the Timoshenko beam theory, the displacement field
can be expressed as

u1ðx1; x3; tÞ ¼ x3wðx1; tÞ; ð19Þ
u3ðx1; x3; tÞ ¼ wðx1; tÞ; ð20Þ

where w(x,t) is the rotation of the normal to the mid-plane about x
directions, respectively.
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Fig. 1. Schematic configuration of a functionally graded piezoelectric beam.
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