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a b s t r a c t

The formulation of an enriched macro element suitable to analyze the free vibration response of compos-
ite plate assemblies is presented in this article. Based on the Trigonometric Shear Deformation Theory
(TSDT) and the use of Gram–Schmidt orthogonal polynomials as enrichment functions a finite macro
element is developed. In the TSDT framework, shear stresses are vanished at the top and bottom surfaces
of the plates and shear correction factors are no longer required. The Principle of Virtual Work is applied
to derive the governing equations of motion. A special connectivity matrix is obtained; so that hierarchi-
cally enriched global stiffness matrix and mass matrix of general laminated plate structures are derived,
allowing to study generally coplanar plate assemblies by combining two or more macro elements. This
procedure gives a matrix-eigenvalue problem that can be solved with optimum efficiency. Results of free
vibration analysis for symmetric laminated plates of different thickness ratios, geometrical planform
shapes and boundary conditions are presented. The accuracy of the formulation is ensured by comparing
some numerical examples with those available in the literature.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, composite materials have become indispensable in
several applications, such as high-performance structures in many
fields of civil, marine and aerospace engineering, among others.

While composite materials have many advantages over conven-
tional materials, they also present complex and challenging prob-
lems for structural analysis and design engineers and
researchers. Many structural elements, such as cylinders, beams,
plates and shells, can potentially be used for the analysis of com-
posite laminates. Particularly, laminated plates of fiber reinforced
composite materials, with different shapes, have great advantages
and are widely used in high-performance structural components.
During the last few decades the use of composite plates has
increased in various engineering applications. The laminated plates
are attractive structural components in many industries, because
of the high stiffness-weight ratio along with the possibility to tailor

the lamination scheme, which could be adapted to the require-
ments of design.

The global deformation of laminated composite plates is, in the
general, characterized by complex couplings between extension,
bending, torsion and shear modes. Furthermore, due to their low
transverse shear stiffness, laminated composite plates exhibit a
much more significant transverse shear deformation than homoge-
neous isotropic plates with the same geometric dimensions, even
for low thickness-to-length ratios. In order to consider these
aspects into the analysis and design of laminated plates, and to
exploit the potential advantages of these materials, it is necessary
to develop methodologies that include these effects. Furthermore,
it is necessary to have accurate analysis tools that allow arrive to
appropriate and versatile designs, according to increasingly strin-
gent requirements.

For the study of plates with any thickness-to-length ratio, the
formulations based on Equivalent Single Layer (ESL) theories must
include the higher-order effects. This is accomplished by applying
theories which take into account the shear deformation in the cin-
ematic expressions, with the advantage of not requiring the use of
shear correction factors and reproducing more accurately the dis-
tribution of interlaminar stresses in thick plates. Interesting Higher
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Order Shear Deformation Theories (HOSDT) were proposed by
authors like Reddy and Liu [1], Touratier [2], Soldatos [3], Kant
and Swaminathan [4], Karama et al. [5], among others, and more
recently, by Mantari et al. [6], Mantari and Guedes Soares [7] and
Grover et al. [8]. These theories satisfy the boundary conditions
corresponding to the free surfaces of the plates and represent
approximately the parabolic distribution of shear stress in the
thickness. Most of the HOSD existing theories have polynomial
expressions for the shear deformation. For example, in the general
formulations presented by Carrera [9], Carrera et al. [10] and Dem-
asi [11–15] the unknown variables are represented throughout the
thickness by polynomial functions.

However, in relation to the ESL theories, in accordance with the
reviews made by the authors and also with Mantari et al. [16], it is
quite important to explore the behavior of other functions in the
implementation of new shear deformation theories. It can be said
that there is evidence of the demand generated by the higher order
trigonometric theories [17], fundamentally due to the fact that
they are much richer than polynomial functions, which are at the
same time, simpler and more precise, and the boundaries condi-
tions in the free surfaces of the plate are guaranteed at priori.

The above mentioned trigonometric theories were applied by
Shimpi and Ainapure [18] and later by Arya et al. [19] for studying
laminated beams. Subsequently, Ferreira et al. [20] used for the
first time a trigonometric shear deformation theory for modeling
symmetric laminated square plates by a meshless method, based
on global multiquadric radial basis functions, obtaining very good
results. Then, Roque et al. [21] used this trigonometric theory for
laminated plates but incorporating the concept of multilayer lam-
inates, obtaining very good results for the static analysis of sym-
metric laminated square plates. Starting from these studies,
Xiang and Wang [22] presented the analysis of free vibrations of
square laminated plates, using the trigonometric shear deforma-
tion theory and inverse multiquadric radial basis functions, arriv-
ing to very good results of natural vibration frequencies for
different material and geometric parameters. Recently, Mantari
et al. [17,23] presented a trigonometric shear deformation theory
to model laminated composite and sandwich plates, with square
or rectangular planform, by formulating a discrete finite element.
Then, Mantari and Guedes Soares [7,24,25] completed these stud-
ies with the analysis of graded plates and advanced composite
plates, respectively.

Regarding the analysis of thick plates of general geometries,
Ramesh et al. [26] presented a higher-order triangular plate ele-
ment based on the Third-order Shear Deformation Theory and a
layer-wise plate theory of Reddy for the bending analysis of lami-
nated composite plates. Zamani et al. [27] presented a transforma-
tion of coordinates combined with the differential equations from
First Order Shear Deformation Theory, to model the problem of free
vibration of laminated plates with trapezoidal and skew planform
with different geometrical parameters, various aspect ratios and
boundary conditions.

Using a Higher Order Shear Deformation Theory, Fazzolari et al.
[28] present an exact dynamic stiffness method for free vibration
analysis of composite plate assemblies. Previously, Houmat and
Rashid [29] presented a method for coupling isoparametric cubic
quadrilateral h-elements and straight sided serendipity quadrilat-
eral p-elements for the free vibration analysis of plates with curvi-
linear planforms.

In previous papers, the authors have presented the formulation
of hierarchical finite macro elements (h-p version of FEM),
enriched with Gram–Schmidt orthogonal polynomials, using the
Classical Laminated Plates Theory (CLPT) [30] and the First Order
Shear Deformation Theory (FSDT) [31–33]. In this paper, the concept
of macro element formulated by the authors is extended, so as to
incorporate the kinematic corresponding to the Trigonometric Shear

Deformation Theory (TSDT), which allows the study of thick lami-
nated plates and plate assemblies, due the incorporation of map-
ping and assembly techniques.

2. Displacement field

A general quadrilateral thick laminated plate element, as shown
in Fig. 1, is considered. A laminate of uninform thickness h with Nl

layers is adopted for the analysis. Each layer consists of unidirec-
tional fiber reinforced composite material. The fiber angle of kth
layer counted from the surface z = �h/2 is b and it is measured
from the x axis to the fiber direction. Symmetric lamination of plies
is considered in this work (see Fig. 1A and C).

Based on the Trigonometric Shear Deformation Theory (TSDT)
and taking into account the corresponding hypothesis [20], the dis-
placement field can be described as:
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where �u; �v; �w ¼ w0 are the displacements of a generic point on the
mid plane (z = 0) along (x, y, z) and (/x, /y) are the rotations of the
transverse normal about y and x axis respectively. During free vibra-
tion, the displacements are assumed split in the spatial and tempo-
ral parts, being the last one periodic in time: w0(x, y, t) = w (x, y)
sin(xt) where x is the radian natural frequency.

The linear strains associated with the displacement fields (Eq.
(1)) are given by:
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3. Equations for dynamic analysis

The governing equations of the problem come from the
dynamic version of the Principle of Virtual Work.Z t2

t1

ðdLÞdt ¼ 0 ð3Þ

where L is the lagrangian and is defined as L = T � (U + V) where U,
V, T are the strain energy, work done by applied forces and kinetic
energy, respectively. In this article the term V is omitted as the anal-
ysis is limited to free vibration response.

The virtual strain energy dU is given by:
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where R is the mid-surface area of the plate (see Fig. 1).
Replacing Eq. (2) into Eq. (4), the following expression is

obtained:
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