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a b s t r a c t

In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embed-
ded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the
graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilibrium equations
are derived in terms of generalized displacements based on first-order shear deformation theory (FSDT)
of orthotropic nanoplates using the nonlocal differential constitutive relations of Eringen. Differential
quadrature method (DQM) has been used to solve the governing equations for various boundary condi-
tions. The accuracy of the present results is validated by comparing the solutions with those reported by
the available literatures. Finally, influences of small scale effect, aspect ratio, polymer matrix properties,
type of planar loading, mode numbers and boundary conditions are discussed in details.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene, first discovered by Geim and Novoselov [1] in 2004,
is a monolayer (with a thickness of only �0.34 nm) of sp2 hybrid-
ized carbon atoms (covalently bonded to three other atoms)
arranged in a honeycomb lattice with a unique series of unprece-
dented structural, mechanical and electrical properties [2]. The
superior properties of these structures have led to its applications
in many fields such as nano sensors, electrical batteries, superfast
microelectronics, micro electromechanical systems (MEMS),
nano-electromechanical systems (NEMS), biomedical, bioelectrical,
reinforcement role at composites, etc. [3–9]. The most commonly
employed methods for graphene manufacturing are micromechan-
ical and chemical exfoliation of graphite, reduction of graphite
oxide, epitaxial growth on SiC, and chemical vapor deposition
(CVD) on transition metals [10]. In order to study the mechanical
behavior of nanostructures, it has been reported that the small
scale effect must play an important role in the nanoscale struc-
tures, but this small scale effect has been ignored when classical
local continuum theory was adopted [11]. Really, we cannot
neglect the van der Waals interaction between the atoms and its
inner distance in contrast with the main structure [12]. On the
other hand, performing the experiment at nanoscale is very

difficult and expensive; also the atomistic simulation such as
molecular dynamics (MD) is highly computationally expensive
and cannot be applied for more number of atoms at surface. So,
using some other methods is vital. In recent years, various size-
dependent continuum theories such as couple stress theory [13],
strain gradient elasticity theory [14–16], modified couple stress
theory [17–21] and nonlocal elasticity theory [22–25] are pro-
posed. These theories are comprised of information about the
interatomic forces and internal lengths that is introduced as small
scale effect in nonlocal elasticity theory [25]. Chen [26] employing
lattice dynamics and MD showed that among the size-dependent
continuum theories (micromorphic theory, microstructure theory,
micropolar theory, Cosserat theory, nonlocal theory and couple
stress theory), the nonlocal elasticity theory of Eringen is the most
reasonable from the physical and atomic points of view. Also, Sun
et al. [27] found that there exists an inconsistency between atom-
istic simulation and the strain gradient elasticity solution for the
bending of nano-scale structures. Peddieson et al. [28] first used
the nonlocal elasticity theory to develop a nonlocal Bernoulli/Euler
beam model. After that, the nonlocal elasticity theory has been
widely used due to its simplicity, high reliability and close agree-
ment with MD simulations for mechanical analysis of carbon nano-
tubes and graphene sheets [26,27,29]. However, on contrary to the
huge studies presented for mechanical analysis of one-dimensional
nanostructures such as nanobeams, nanorods and CNTs, only some
works are presented on two-dimensional ones such as graphene
sheets. So, our understanding of the mechanical behaviors of
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graphene sheets such as buckling is essential for their engineering
design and manufacture. Pradhan [30] employed higher-order
shear deformation theory using the nonlocal differential constitu-
tive relations of Eringen in order to study buckling behavior of iso-
tropic single-layered graphene sheet and obtained an analytical
solution for critical buckling load of these nanoplates. Murmu
and Pradhan [31] carried out biaxial buckling study of orthotropic
graphene sheets based on nonlocal Kirchhoff model and obtained
explicit expression for modified buckling load. They [32] also
implemented nonlocal elasticity theory to investigate the buckling
behavior of single-layered graphene sheet (SLGS) embedded in an
elastic medium. Their results show that the buckling loads of SLGS
are strongly dependent on the small scale coefficients and the stiff-
ness of the surrounding elastic medium. Narendar [33] presented
the buckling analysis of isotropic graphene sheets using the two
variable refined plate theory and nonlocal small scale effects. He
concluded that the present theory, which does not require shear
correction factor, is not only simple but also comparable to the
first-order and higher order shear deformable theory. Samaei
et al. [34] investigated the effect of length scale on buckling behav-
ior of an isotropic single-layer graphene sheet embedded in a Pas-
ternak elastic medium using a nonlocal Mindlin plate theory and
extracted explicit solution for the buckling loads of graphene sheet.
Farajpour et al. [35] studied uniaxial buckling response of orthotro-
pic nanoscale plates under linearly varying in-plane load via non-
local Kirchhoff theory. They found that for the case of pure in-
plane bending, the nonlocal effects are relatively more than other
cases. Using Levy’s method, Pradhan [36] investigated buckling
behavior of biaxially compressed graphene sheets based on non-
local elasticity theory. He found that nonlocal parameter and
boundary conditions significantly influence the critical buckling
loads of the small size graphene sheets. Ansari and Shamani [37]
studied the biaxial buckling behavior of single-layered graphene
sheets based on nonlocal plate models and molecular dynamic
simulations. They extracted the appropriate values of nonlocal
parameter relevant to each type of nonlocal elastic plate model
and chirality. They also showed that the present nonlocal plate
models with their proposed proper values of nonlocal parameter
have an excellent capability to predict the biaxial buckling
response of SLGSs. Analooei et al. [38] used nonlocal continuum
mechanics and spline finite strip method due to elastic buckling
and vibration analysis of orthotropic nanoplates. Their results
revealed that small scale effect plays considerable role in the anal-
ysis of small sizes plates. Murmu et al. [39] reported an analytical
study on the buckling of double-nanoplate-system (DNPS) sub-
jected to biaxial compression using nonlocal elasticity theory. Sar-
rami-Foroushani and Azhari [40] using the nonlocal classical plate
theory and finite strip method studied vibration and buckling of
single and multi-layered graphene sheets. They observed that in
the nanoscale structures the critical buckling load and natural fre-
quency are highly dependent on nonlocal parameter.

As far as knowledge of authors is concerned, there is no litera-
ture considering the non-uniform biaxial buckling analysis of
orthotropic nanoplate embedded in a Pasternak elastic medium
based on the nonlocal Mindlin plate theory. Thus, this study is pre-
sented considering the non-uniform biaxial buckling of embedded
graphene sheet under various distribution of linearly planar load
along the edges. Governing equations are derived based on Mindlin
theory with considering orthotropic property and nonlocal theory
of Eringen in order to consider the size effects. Both Winkler-type
and Pasternak-type foundation models are employed to simulate
the interaction between the graphene sheet and the surrounding
elastic medium. The created eigenvalue problem is solved using
the differential quadrature method for simply-supported boundary
condition, clamped boundary condition and combination of them.
To verify the accuracy of the present consequences, simplified

results are compared with those of available references and molec-
ular dynamics results. Excellent agreement between the results is
observed fortunately. Finally, influences of many parameters such
as small scale effect, aspect ratio, polymer matrix properties, distri-
bution of planar loading, mode numbers and boundary conditions
are discussed in details.

2. Formulation

The single-layered graphene sheet is simulated as a rectangular
nano-plate and the elastic medium is modeled using an elastic
foundation, both Winkler-type and Pasternak-type elastic founda-
tion. Fig. 1 shows the discrete model and continuum model used in
this study for a single-layer graphene sheet resting on two-param-
eter foundation with length lx, width ly and thickness h. As seen in
Fig. 1, a Cartesian coordinate system is placed at one corner of the
graphene sheet with the x,y and z axes along the length, width and
thickness, respectively. Also, the linear variations of in-plane com-
pressive loadings along the x and y axes denoted in Fig. 2 by Py(x)
and Px(y), respectively, are defined by:

PxðyÞ ¼ �P1 1� k1
y
ly

� �
; PyðxÞ ¼ �P2 1� k2

x
lx

� �

¼ �k0P1 1� k2
x
lx

� �
ð1Þ

where P1 is normal stress along the x direction at origin point and
k0, k1, k2 are optional parameters defined to express the loading dis-
tribution. According to the first-order shear deformation theory
(FSDT), the following displacement field can be expressed as:

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zuxðx; y; tÞ
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zuyðx; y; tÞ
wðx; y; z; tÞ ¼ w0ðx; y; tÞ

8><
>: ð2Þ

where u, v and w are the displacement components of point (x,y)
along x, y and z directions, respectively at time t. Also, u0, v0 and
w0 are the displacement functions of the middle surface of the
graphene sheet. Moreover, ux and uy are the local rotations for x
and y directions, respectively. The general strain relations are
expressed as:

Fig. 1. Graphene sheet in a Pasternak medium under biaxial buckling load.
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