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Nonlinear free vibration of symmetric magneto-electro-elastic laminated rectangular plates with simply
supported boundary condition is studied for the first time. The first order shear deformation theory con-
sidering the von Karman'’s nonlinear strains is used to obtain the equations of motion, whereas Maxwell
equations for electrostatics and magnetostatics are used to model the electric and magnetic behavior.
Closed circuit electro-magnetic boundary condition at top and bottom surfaces of the plate is considered.
Then, the nonlinear partial differential equations of motion are transformed into five coupled nonlinear
ordinary differential equations by using the Galerkin method. Afterward, the obtained coupled ordinary
differential equations are reduced to a single nonlinear differential equation with quadratic and cubic
nonlinear terms. A perturbation method is used to solve the equation of motion analytically and a
closed-form solution is obtained for the nonlinear frequency ratio. The results for natural frequency
and nonlinear frequency ratio are compared with the available results for isotropic, laminated and
piezo-laminated, and laminated magneto-electro-elastic plates and good agreement is found between
the results of present study with the results of previously published papers. Several numerical examples
are carried out to show the effects of different parameters on the nonlinear behavior of these hybrid

Keywords:

Nonlinear free vibration
Magneto-electro-elastic
Laminated plates
Perturbation technique

plates.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Magneto-electro-elastic (MEE) composite materials are a new
class of smart materials which exhibit a coupling between
mechanical, electric and magnetic fields and because of the ability
of converting energy among these three energy forms, these lami-
nates have direct application in sensors and actuators, control of
vibrations in structures, etc.

Various analytical or numerical studies have been carried out
for these multiphase and multifunctional materials which include
studies on the static deformation [1,2], free vibration [3-9] and
on the linear dynamic response [10-15]. Milazzo [16] presented
a family of 2D refined equivalent single layer models for multilay-
ered and functionally graded smart magneto-electro-elastic plates.
The same author [17] introduced layer-wise and equivalent single
layer model to study the multi-layered laminated MEE plates. Li
et al. [18] investigated the buckling and free vibration of magneto-
electroelastic nanoplate resting on Pasternak foundation and stud-
ied the effects of the electric and magnetic potentials, and spring
and shear coefficients of the Pasternak foundation on the buckling
load and vibration frequency.
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In the nonlinear field, few studies on the nonlinear behavior of
MEE plates are available which deal with static motion [19-22] or
the nonlinearity is due to constitutive equations of MEE material
[23,24]. Xue et al. [19] studied the large deflection of a rectangular
MEE plate for the first time. They derived the nonlinear partial dif-
ferential equation (PDE) of motion for the rectangular MEE thin
plate based on the von Karman plate theory of large deflection
and by employing the Bubnov-Galerkin method, transformed
these PDEs to a third order algebraic equation. Then by solving this
algebraic equation, they found an analytical relation for maximum
deflection of the plate. Later, Sladek et al. [20] used a meshless local
Petrov-Galerkin (MLPG) method to study the large deflection of
MEE thick plates under a static and time-harmonic mechanical
load. Milazzo [21] derived a model for the large deflection analysis
of magneto-electro-elastic laminated plates based on the first
order shear deformation theory and the von Karman stress func-
tion. Alaimo et al. [22] presented an original finite element formu-
lation for the analysis of large deflections in magneto-electro-
elastic multilayered plates. They used first order shear deformation
theory with von Karman strains and quasi-static behavior for the
electric and magnetic fields to obtain their model. More recently,
Kattimani and Ray [25] studied the active constrained layer damp-
ing (ACLD) of large amplitude vibrations of smart MEE doubly
curved shells by using a three-dimensional finite element model
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using the von Karman type nonlinear strain displacement relations
for incorporating the geometric nonlinearity. To the authors
knowledge there is not any study dealing with the nonlinear vibra-
tion of MEE smart plates. So, this study is done to fill this gap in
analyzing of MEE plates.

In this paper, the nonlinear free vibration of a symmetrically
stacked laminated MEE rectangular plate with simply supported
boundary condition is studied for the first time based on the first
order shear deformation theory along with the von Karman’s non-
linear strains, whereas the Maxwell equations for electrostatics
and magnetostatics are used to model the electric and magnetic
behavior. Closed circuit electro-magnetic boundary condition at
top and bottom surfaces of the plate is considered. Moreover, the
widely employed assumption of zero in-plane components of the
electric and magnetic fields are considered in the present study,
namely E,, E,, H,, and H, are neglected and only the transverse elec-
tric field E; and magnetic field H, are considered. A perturbation
method is used to solve the equation of motion analytically. After
the validation of present study, the effects of several parameters
on the nonlinear behavior of MEE plates are investigated.

2. Modeling of the problem

Consider a rectangular transversely isotropic MEE thin plate as
shown in Fig. 1 in which a, b, and h are length, width and thickness
of the plate, respectively. For a MEE material, the constitutive rela-
tions can be written as [1]:

o =C¢—eE—-qH (1)
D=e’s+yE+dH )
B=q'¢+dE+ puH (3)

in which for an orthotropic MEE solid, the coefficients are given by
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Fig. 1. A thin rectangular MEE plate.

where 6 = {0 Oyy Oy O Oy}’ and &= {&w &y V), Yy V) are
stress and strain vectors, respectively; D={D,D,D,}’ and
B={B,B,B,}" are the electric displacement and magnetic flux
vectors, respectively; E ={E:E,E,}" and H={HH,H,}" are electric
field and magnetic field vectors, respectively; C, # and u are the
elastic, dielectric and magnetic permeability coefficient matrices,
respectively; and e, q and d are the piezoelectric, piezomagnetic
and magnetoelectric coefficient matrices, respectively.

Equations of motion of rectangular plates, based on the first
order shear deformation theory are [26]:

Nyx + Nyyy = IoUoge + 110x 1t (5)
Nyx+Nyy =Iovose + 1104 (6)
Qux +Qyy + N(Wo) + q = lowo (7)
Myx + Myyy — Qx = L0y + l1lloge (8)
Myyx+Myy —Qy = L0y + L Vo (9)

where subscript ‘,” denotes partial differentiation with respect to the
following parameter (or parameters). uo, 7, and wy are the
displacements of a material point on the mid-surface along x—,
y—, and z—axes, respectively. 0, and 0, are the rotations of a trans-
verse normal about the y- and x-axes, respectively. Ny, Ny, and Ny,
are the in-plane force resultants, Qx and Q, are the transverse force
resultants, My, M,, and M,, are the moments resultants and Iy, I,
and I, are the mass moments of inertia. g is the applied transverse
load which is zero in the free vibration. A (wy) is:

N (wo) = (NxWox + NxyWoy) , + (NeyWox + Nywo_y).y (10)
and the other unknown parameters are obtained by:
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where K is the shear correction factor.

Assuming the density of plate material (po) as an even function
of thickness (z) and neglecting in-plane inertia effects (ug, and

v,.) [27] and rotary inertial effects (0y, and 0y), Egs. (5)-(9)
reduce to:

Nyx+Ny,y=0 (12)
ny‘x + Nyy =0 ( )
Qux+Qyy+ (NxWo,x + nyWO‘y) ot (nyWO.x + NyWO.y) = Iowoie  (14)
My x+Myyy— Q=0 (15)
My x+M,;,—Q,=0 (16)
Substitution of Eqgs. (1)-(4) along with von Karman’s nonlinear

strains [26] into Eq. (11) gives the following force and moment
resultants for a symmetric MEE plate:
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