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a b s t r a c t

The elastic properties of graphene sheet at finite strain and curvature tensors are studied employing
atomistic–continuum multiscale modelling approach in Lagrangian framework. The strain energy density
function at continuum level is expressed as total interatomic potential per unit area of a unit cell incor-
porating continuum deformation through Cauchy–Born rule. Two different multibody interatomic poten-
tials namely Tersoff–Brenner potential and second generation REBO potential are used to model the
interactions between carbon atoms. The in-plane tangent extensional stiffness, bending stiffness, bend-
ing–stretching coupling stiffness matrices are obtained by differentiating the strain energy density func-
tion. The effect of different combinations of induced strain/curvature on stiffness coefficients is studied
for graphene sheet with zigzag, armchair and chiral configurations. It is found that the graphene sheet
possesses a material softening behaviour at finite strains and hardening behaviour at finite curvatures.
The nonzero normal-shear coupling and tangent bending–stretching coupling stiffness coefficients are
reported at finite strain/curvature for the first time in this work.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The discovery of carbon nanotubes (CNTs) by Iijima [1] has
stimulated a large number of studies on their experimental and
theoretical characterizations. The carbon nanotubes (CNTs) exist
in two forms i.e. single walled carbon nanotube (SWCNT) and multi
walled carbon nanotube (MWCNT). SWCNTs are rolled form of
single layer of carbon atoms known as graphene sheet (GS).
Novoselov and his team [2,3] were able to separate the single layer
of carbon atom from bulk graphite for the first time through micro-
mechanical cleavage. The theoretical studies on graphene sheets
(GSs) have started before their existence was practically demon-
strated [4,5]. The nanostructures including CNTs and GSs have
applications in the field of nanocomposites, nanodevices, medical
science (e.g. fabrication of artificial bones and teeth due to their
superior compatibility with biological cells) etc.

A number of experimental and theoretical studies have been
carried out to evaluate the mechanical properties of CNTs and
GSs. Lu [6] studied the elastic properties of SWCNTs and MWCNTs
using lattice dynamics model employing pair-wise harmonic
interatomic potential and predicted tensile and shear modulli of
SWCNT about 1 TPa and 0.45 TPa, respectively. Yakobson et al.
[7] obtained 5.5 TPa Young’s modulus and 0.066 nm corresponding

wall thickness using Tersoff–Brenner potential based molecular
dynamics simulation of SWCNT. Tu and Ou-Yang [8] reported ten-
sile modulus of SWCNT about 4.70 TPa and corresponding wall
thickness 0.075 nm using local density approximation model.
Kudin et al. [9] employed ab initio calculation to find elastic
properties and reported Young’s modulus, Poisson’s ratio and wall
thickness as 3.86 TPa, 0.149 and 0.089 nm, respectively.

Treacy et al. [10] experimentally reported tensile modulus of
individual CNTs in 11 walled CNT varying from 0.4 to 4.15 TPa with
an average of 1.8 TPa. They evaluated the elastic properties by
comparing the vibration amplitude of CNT measured using
transmission electron microscope and that predicted through the
formulae of continuum mechanics. Laurie and Wagner [11]
measured tensile modulus of SWCNT and MWCNT employing
micro-Raman spectroscopy and reported tensile modulus at
395 K, 465 K and 537 K of SWCNT as 3.577 TPa, 2.825 TPa and
3.005 TPa, respectively.

Zhang et al. [4] reported the elastic properties of SWCNT using
Tersoff–Brenner interatomic potential without considering the
effect of initial curvature. Arroyo and Belytschko [12] studied
extensional and bending stiffness of graphene sheet using Ters-
off–Brenner interatomic potential. Guo et al. [13] and Wang et al.
[14] investigated elastic properties of graphene sheets and CNTs
using higher order Cauchy–Born rule and Tersoff–Brenner poten-
tial. Odegard et al. [15] proposed an equivalent continuum method
for modelling the graphene sheets and CNTs. Li and Chow [16] pro-
posed space frame method for evaluating the properties of carbon
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nanotubes. The covalent bonds between carbon atoms were
modelled as beam and their cross sectional properties were
obtained from molecular mechanics. Scarpa et al. [17] studied
the elastic properties of graphene sheets using space frame
approach with modified Morse potential.

In all the above cited studies, the elastic properties are reported
at infinitesimal strains. However, these materials possess nonlinear
material behaviour due to highly nonlinear interatomic interaction
energy and thus it is important to investigate their stiffness at
finite strains. Further, the bending behaviour cannot be described
using flexural rigidity formulae of classical plate theory [12,18].
Thus, it is more appropriate to obtain bending stiffness coefficients
of graphene sheet by differentiating the strain energy density func-
tion with respect to curvature. There are limited number of studies
on elastic behaviour of graphene sheet at finite strains. Zhou and
Huang [18] reported the effect of in-plane finite strain on internal
relaxation of graphene sheet but extensional stiffness variation
with strain was not reported. Lu and Huang [19] studied variation
of extensional stiffness coefficients using molecular dynamics sim-
ulation employing second generation reactive empirical bond
order (REBO) potential. Lu et al. [20] studied the effect of curvature
on bending modulus of graphene sheet at finite curvature under
cylindrical bending. The deformed bond length is considered as
function of in-plane strains and curvatures. It can be concluded
from the detailed literature review that the effect of in-plane strain
on bending stiffness, effect of curvature on extensional stiffness,
and coupled effect of in-plane strain/curvature on extensional
and bending stiffnesses have not been investigated. Further, at
finite curvatures, bending–stretching coupling may be significant
and should be accounted for while dealing the multiscale finite
deformation modelling of GSs. In the available literature, bending
stiffness coefficients of graphene sheet under biaxial and twist cur-
vatures have not been investigated. In view of the above, the main
aim of the present work is to evaluate the extensional stiffness,
bending stretching coupling stiffness and bending stiffness coeffi-
cient matrices of graphene sheet under finite strains/curvatures
using Tersoff–Brenner interatomic potential. The results obtained
with REBO potential are also presented for comparison purpose.

2. Atomistic – continuum modelling

The atomistic – continuum theory is established by coupling the
deformation at atomic level to that at continuum level using the
Cauchy – Born rule as depicted in Fig. 1. The bond vectors in
deformed (rij) and undeformed configurations ðr0

ijÞ are related
through the continuum deformation gradient (F) as:

rij ¼ F � r0
ij ð1Þ

The deformed bond length accounting for the curvature effect
can be written as [21]:

rij ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0

ij � ðIþ 2EÞ � n0
ij � 1=12ðr0Þ2 n0

ij � K � n0
ij

h i2
r

ð2Þ

where E is Green–Lagrange strain tensor, K is curvature tensor, n0
ij is

the unit vector along the undeformed bond vector and r0 is the
undeformed bond length. Eqs. (1) and (2) are valid for materials
with centrosymmetry. The hexagonal lattice structure of graphene
(Fig. 2(a)) does not possess centrosymmetry [4,12]. In order to sat-
isfy the condition of centrosymmetry, unit cell is decomposed into
two sub-lattice structures marked A and B as shown in Fig. 2(b).
Each triangular sub-lattice satisfies the centrosymmetry require-
ment of Cauchy–Born rule. In the loaded/deformed unit cell, the
sub-lattices will assume minimum energy configuration by relative
shifting. This relative shift is known as internal relaxation and the
corresponding vector is called shift vector denoted by g. Consider-
ing the effect of internal relaxation on the deformed bond length,
Eq. (2) can be modified as [4,21]:

rij ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0

ijþgÞ � ðIþ2EÞ � ðn0
ijþgÞ�1=12ðr0Þ2 ðn0

ijþgÞ �K � ðn0
ijþgÞ

h i2
r

ð3Þ

The total interatomic potential in terms of deformed bond
lengths within the unit cell can be expressed as:

V ¼
X

i¼1
j¼2:4

X
k¼2:4

k–j

Vðrij; rik; hijkÞ ð4Þ

Bond length rik can be obtained from Eq. (3) by replacing j with
k. Bond length rjk and bond angle hijk are computed using the fol-
lowing expressions:

rjk ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0

jkÞ � ðIþ 2EÞ � ðn0
jkÞ � 1=12ðr0Þ2 n0

jk � K � n0
jk

h i2
r

ð5aÞ

Fig. 1. Mapping of deformation at atomic level to that at continuum level using
Cauchy–Born rule.

Fig. 2. (a) Zigzag (b = 0), armchair (b = 30) and chiral (0 < b < 30) configurations of
graphene sheet (b) Schematic arrangement of carbon atoms in unit cell of graphene
sheet, A and B represents atoms from two different sub-lattices.
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