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a b s t r a c t

In this paper, an attempt is made to obtain a closed form solution for both natural frequency and buckling
load of nonlocal FG beams resting on nonlinear elastic foundation. Implementing Eringen’s nonlocal
elasticity theory, the effect of nonlocality is introduced into the Euler–Bernoulli beam theory to obtain
the nonlinear governing partial differential equation. Application of the Galerkin technique to the govern-
ing equation leads to a nonlinear ODE in the time-domain. Finally, natural frequency of the FG nano beam
is obtained using He’s variational method. It is shown that considering the nonlocal effects decreases the
buckling load as well as natural frequency. Results also reveal that effects of nonlocal parameters on fully
clamped beams are more than other types of boundary conditions. Moreover, it is shown that the effect of
nonlocality decreases by increasing length of the beam.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Half a century passed from Richard Feynman lecture in Ameri-
can Physical Society about the possibility of maneuvering things
atom by atom [1], development in modern technologies leads to
create many new materials at nano scales. Nanotechnology is the
manipulation of matter on an atomic, molecular, and supramolec-
ular scale. Nanotechnology has been successful in creating many
new applied materials and devices in electronics, medicine and
energy production. The distinguished properties of materials at
nano scale are resulted from their very small dimensions. Both
experimental and atomistic simulation approves that size effect
has a significant role in static and dynamic behavior of nano struc-
tures. Mainly, size effects arise from two sources; existence of
quantum effects and high surface to volume ratio [2].

It is well known that size effects are not taken into account by
the classical continuum mechanics and therefore, cannot be used
directly to model material behavior at this scale. On the other
hand, however, atomistic analyses or experimental tests demand
higher computational or laboratory costs. Therefore, in order to
include the size effects in continuum mechanics, different theories
are proposed to include additional length parameters, such as
modified couple stress theory [3], strain gradient theory [4],
nonlocal elasticity theory [5] and surface elasticity [6]. Among
these theories, Eringen’s nonlocal elasticity theory [5] is shown

to be capable of studying different behavior of nano structures.
Subsequently, this theory was implemented by various researchers
in order to investigate the mechanical behavior of different
structural elements. Peddison et al. [7] were the first researchers
to propose nonlocal elasticity theory to nano structures. Afterward,
the theory received more attention among the nanotechnology
community and the application of this theory generalized in
different mechanical analyses.

The simplicity of application of Eringen’s nonlocal elasticity
theory in different nano structures resulted in rapid extension of
this theory. Wang and Liew [8] used the model to perform a static
analysis of micro and nano structures. Reddy [9] combined the
nonlocal theory with different types of beam theories to analyze
bending, buckling and vibration of nanobeams. Eringen’s nonlocal
theory was also of interest in the modeling of carbon nanotubes.
Pradhan and Reddy [10] applied DTM to analyze buckling of single
walled carbon nanotubes which is resting on Winkler elastic foun-
dation. Zhang et al. [11,12] studied the effect of small length scale
on the elastic buckling of multi-walled carbon nanotubes under
axial compression and radial pressure, respectively. Murmu and
Pradhan [13] combined Timoshenko beam theory with principles
of nonlocal elasticity to study the buckling of single-walled carbon
nanotube embedded in an elastic medium. Phadikar and Pradhan
[14] also used variational formulation in finite element analysis
of nonlocal elastic nanobeams and nanoplates. Murmu and
Adhikari [15] analyzed the transverse vibration of double-
nanobeam-systems. More recently, Thai and Vo [16] presented a
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nonlocal sinusoidal shear deformation beam theory for bending,
buckling and vibration of nanobeams.

In the past decade, functionally graded materials (FGMs) were
also of interest. This new type of materials with continuous
variation of the material properties have some advantages over
conventional laminates such as smaller thermal stress and stress
concentration which reduce possibility of delamination and crack-
ing. The application of functionally graded materials are in nano/
micro electromechanical systems such as atomic force microscopes
[17] and electrically actuated MEMS devices [18,19]. The dimen-
sions of these structural devices usually do not exceed micron
scale; therefore, a size dependent analysis seems to be necessary
in investigation of FG materials. Up to now, different theoretical
and experimental investigations have been performed in order to
analyze mechanical behavior of FG structures, see [20,21]. More-
over, different types of nano scale FG materials are produced by
using various fabrication processes Kian Kerman et al. [22] applied
co-sputtering to fabricate a compositionally graded electrolyte at
nano scale which is employed in low-temperature solid oxide fuel
cell and is mechanically robust and chemically stable for this appli-
cation. Kim et al. [23], also, discussed the fabrication of nano-micro
porous Titanium surface by anodizing which exhibited enhanced
performance. Wang et al. [24] applied centrifugal method to fabri-
cate functionally graded nanocomposites. Stepwise functionally
graded synthetic nanocomposites were also fabricated by com-
bined powder stacking and compression molding techniques [25].

Recently, a few researchers made attempts to consider nonlocal
effects in the analysis of structures made of functionally graded
materials. Eltaher et al. [26,27] obtained the natural frequencies
and investigated static and stability behavior of functionally
graded nanobeams by using finite element formulation. S�ims�ek
[28] implemented Galerkin technique to investigate the behavior
of axially functionally graded tapered nanorods in free longitudinal
vibration. Bending and buckling of FG nanobeams were examined
by S�ims�ek and Yurctu [29] using an analytical approach. Kiani [30]
proposed a mathematical model to explore vibrations and instabil-
ities of moving FG nanobeam by implementing nonlocal Rayleigh
beam model. Rahmani and Pedram [31] analyzed the size effect
on vibration of nonlocal Timoshenko beam. Finally, Nazemnezhad
and Hosseini-Hashemi [32] implemented conventional averaging
technique to obtain nonlinear natural frequency of functionally
graded beams. However, to the best knowledge of the authors,
no study has focused neither on buckling behavior nor on the effect
of elastic foundation on vibrational and buckling behavior of non-
local functionally graded beam.

In the present study, an attempt is made to investigate the
free vibration and buckling behavior of functionally graded
nanobeams resting on nonlinear elastic foundation. Application
of Galerkin technique to the equation of motion of the beam
results in a second order nonlinear ordinary equation as the gov-
erning equation of the problem. Using He’s variational method, a
closed form solution is obtained for natural frequency of non-

local FG beams. Finally, through some numerical examples, the
effects of various parameters such as nonlocality, boundary con-
ditions, material inhomogeneity and nonlinearities of the system
are investigated.

2. Governing equations

2.1. Material properties

A functionally graded nanobeam with length L, thickness h and
width b is depicted in Fig. 1. Different material properties such as
elastic modulus, E, mass density, q, Poisson’s ratio, m, is considered
to vary according to power-law form which can be described by

PðzÞ ¼ ðPU � PLÞ
z
h
þ 1

2

� �n0

þ PL ð1Þ

in which Pu and PL may be any of the above material properties at
the upper and lower surfaces of the beam, respectively, and index
n0 indicates the variation profile of material properties across the
thickness of the nanobeam. According to this distribution function,
for n0 = 0 there is no material inhomogeneity in the beam and it
may be considered an isotropic beam with bulk properties of the
upper surface.

2.2. Nonlocal effects

In the classic elastic continuum theory, the stress field at a point
X only depends on the strain field at the same point. However,
according to Eringen’s nonlocal elasticity theory, stress field at a
point is dependent on strains at all other points of the body. There-
fore, the nonlocal stress tensor rnl at point X is defined by

Fig. 1. Nonlocal functionally graded beam resting on nonlinear elastic foundation.

Table 1
The mode shape functions of a uniform beam for the different boundary conditions
[21].

B.C. Mode shape function

SS sin(px)
CS ðcoshðqxÞ � cosðqxÞÞ � coshðqÞ�cosðqÞ

sinhðqÞ�sinðqÞ ðsinhðqxÞ � sinðqxÞÞ; q ¼ 3:9266

CC ðcoshðqxÞ � cosðqxÞÞ � coshðqÞ�cosðqÞ
sinhðqÞ�sinðqÞ ðsinhðqxÞ � sinðqxÞÞ; q ¼ 4:7300

Table 2
The material properties of the constituent material of the FG beam [32].

Material Young modulus
[GPa]

Poisson’s ratio Density
[kg/m3]

Metal Aluminum 70 0.24 2700
Ceramic Silicon 210 0.30 2370

H. Niknam, M.M. Aghdam / Composite Structures 119 (2015) 452–462 453



Download English Version:

https://daneshyari.com/en/article/251489

Download Persian Version:

https://daneshyari.com/article/251489

Daneshyari.com

https://daneshyari.com/en/article/251489
https://daneshyari.com/article/251489
https://daneshyari.com

