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a b s t r a c t

The flexural dynamic characteristics of the cored sandwich plate with periodically perforated viscoelastic
damping material (VDM) are analyzed by considering the frequency and temperature relationship in this
paper. First, the mechanism of the sandwich plates is developed by using the Saint–Venant principle and
the flexural and shearing deformation compatible equations. Next, the deflection equation of the sand-
wich plate is established based on the principle of flexural deflection of isotropy plate, and then, it is
expanded for easy solution by the second order ‘‘rapid’’ asymptotic method. The opening ratio and the
thickness of the core layer which affects the loss factor of sandwich plate are thoroughly researched.
Finally, the validity is performed and the advantage of the perforated structure in industrial application
is presented.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Viscoelastic damping material (VDM) is utilized widely in
mechanical structure such as national defense, navigation, and
aerospace industries for its good mechanical properties. VDM not
only is low in weight and cost, high reliability, and easy implemen-
tation, but also has decent noise and vibration control ability espe-
cially on lightweight and flexible structures [1]. Theoretical
analysis for the VDM mechanism can be traced to as early as
1950. Liénard [2], Oberst [3], and Mead [4,5] had done a thoroughly
research on composite beam and plate. Subsequently, there are
plenty of researchers who investigated VDM beam plate and shell
structures. For example, Mead and Markus [6,7], Yan and Dowell
[8], Rao et al. [9], Kristensen et al. [10], Kumara and Singh [11],
and Sher and Moreira [12] are typical researchers in this area. Tra-
ditionally, VDM has four methods of application in industry, which
is free layer damping, constrained layer damping [11,13] and par-
tially constrained layer damping [14], and active constrained layer
damping [15,16]. The free layer damping is the easiest method of
application of VDM, which need only patch the VDM on the struc-
ture. However, the effect of this method is very limited. The con-
strained layer damping, also called hybrid damping, is an
efficient way to utilize the VDM. Therefore, it is applied mostly

in industry. The active constrained layer damping has the proper-
ties of self-controlling, self-monitoring capabilities, and high loss
factor by using piezoelectric material. With deep analysis on mech-
anisms of VDM, it is found that partially constrained layer becomes
a good format for application in dynamic mechanics engineering
products.

The effects of VDM application are depended largely upon the
frequency and temperature. Unfortunately, the frequency and tem-
perature are two dependent parameters in VDM. When they have
been introduced into structures, the dynamics analysis will be very
difficult to deal with. There are three theoretic models which
describe the frequency dependent parameters of VDM, as shown
in Eqs. (1)–(3)
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where: G⁄(x,T) is complex shear modulus of VDM; f(x,T) is fre-
quency and temperature dependent damping ratio; x = 2pf, f is
the frequency; and j ¼
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, is the imaginary part. The symbolic
meaning in Eq. (1) can be checked in Ref. [13]. Model strain energy
method is presented in Eq. (2) is applied in this paper to calculate
the frequency dependent storage modulus and damping ratio which
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are adopted in Refs. [17,18]. The frequency dependent shear modu-
lus of Eq. (3) is found in [14,19,20].

Recently, VDM core layer laminated sandwich structure (sand-
wich structure) is widely utilized in engineering by virtue of its dis-
tinctive advantages such as light mass, high strength/stiffness,
seismic behavior, and vibration/sound insulation. Many research-
ers analyzed the dynamic characteristics of VDM core layered
sandwich beam [6,7,21], plate [22,23], and shell [24–26]. Ferreira
et al. [22] researched VDM core layered sandwich laminated plate
through layer wise finite element model based on Carrera’s Unified
Formulation. Meanwhile, the frequency dependent coefficient of
the core layer was considered, and the results revealed a good con-
sistency with experiment. Oh [26] took the transverse shear and
normal strains and the curved geometry into account. Applying
the refined finite element method based on the layer wise shell
theory, he researched cylindrical hybrid panels with co-cured
and constrained layers of VDM. He also compared the different
damping effects between partial and full layerwise shell. Li [27]
applied Hamilton principle and derived the dynamic governing
equations for a thin laminated circular plate. He concluded that
the critical speeds of the rotating laminated plate with the visco-
elastic core layer could be improved by a proper thickness ratio,
Young’s modulus ratio, and loss factor.

For analyzing composite materials and structures, asymptotic
method is a powerful mathematically rigorous technique, which
can explore the periodical structures with dimensions of a unit cell
which is much smaller than the overall dimensions of the solid unit
[28,29]. It is used especially in the periodical and quasi-periodic
thin-plate or shell, and laminated and composite plate and struc-
ture [30–33]. Barbero et al. [30] used Koiter’s asymptotic method
on laminated composite structure, and presented a numerical
example for buckling and post-critical analysis. They concluded
that asymptotic method was a valid and less computation method
which was an alternative for the Riks path-following method. Hao
et al. [31] analyzed a cantilever functionally graded rectangular
plate based on Reddy’s third-order plate theory and Hamilton’s
principle with assuming the temperature dependent material.
They obtained a nonlinear averaged equation by applying asymp-
totic method, and concluded that chaotic, periodic, and quasi-peri-
odic motions of the plate were existed under certain conditions,
and could change the form of motions for the rectangular plate.
Based on the rigorous mathematical foundation of the asymptotic
method, Cai et al. [32] developed and implemented finite element
formulations for periodic composite plate and shell without any
complicated mathematical derivation. Therefore, it could be
applied easily by using commercial software.

The frequency and temperature dependent storage modulus
and damping ratio of VDM applied in this research is measured
by resonance method [34]. In which, the frequency ranges from 1
to 1000 Hz, and the temperature is 10 to 30 �C, which are listed
in Table 1 below.

In this table, the polynomial interpolation is applied. Nine times
polynomial interpolations is performed to achieve higher preci-
sion. Interpolation figures are shown in Fig. 1(a) and polynomial
coefficients are shown in Table 2.
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where O = log10(f), Ci is the coefficient of 9 times polynomial interpo-
lations. Substituting Eq. (4) into Eq. (2), the frequency and tempera-
ture dependent shear modulus is obtained, as shown in Fig. 1(b).

The rest of the paper is organized as follows. The modeling and
mathematical formulation of the sandwich plate is described in
Section 2, which contains establishment of strain energy and
kinetic energy of a unit cell and its equilibrium equations based
on the Saint–Venant principle. Asymptotic analysis and model
reductions of the sandwich plate are presented in Section 3.
Numerical analysis and result comparison are illustrated in Sec-
tion 4. Finally, discussion and conclusion are given in Section 5.

2. Modeling and mathematical formulation of sandwich-plates

The periodically perforated VDM core layer sandwich plate
model and a unit cell model are presented in Fig. 2. VDM layer is
perforated. Material and geometry schematics of the unit cell are
illustrated in Fig. 3. To model the structure, the following assump-
tions are made for deriving the equations of the motion.

(i) The lamination thickness is very small, compared to its other
dimensions.

(ii) The layers of the sandwich are perfectly bonded.
(iii) Lines that are perpendicular to the surface of the lamination

remain straight and are perpendicular to the surface after
deformation.

(iv) The middle plane of the sandwich plate is half thickness of
the plate.

(v) The shear strain and rotation inertia in the face pales are
ignored.

Set the in-plane displacements of the points in the middle
planes of the top and bottom layer in x and y direction, ui and vi,

Table 1
Frequency and temperature dependent storage modulus and damping ratio of VDM.

Frequency (Hz) 10 �C 20 �C 30 �C

E0(x) f(x) E0(x) f(x) E0(x) f(x)

1 6.24E+08 1.09083 54300000 1.08332 24400000 0.507772
2 8.25E+08 0.959036 71700000 1.23898 28300000 0.588709
5 1.35E+09 0.724428 1.16E+08 1.41153 35600000 0.743035

10 1.72E+09 0.60444 1.76E+08 1.43741 44100000 0.899954
25 2.33E+09 0.453899 2.34E+08 1.40918 61800000 1.13551
40 2.57E+09 0.411398 3.45E+08 1.31039 74800000 1.25689
60 2.78E+09 0.373665 4.63E+08 1.20307 89900000 1.36311
80 2.9E+09 0.343765 5.61E+08 1.12698 1.04E+08 1.41862

120 2.13E+09 0.346326 6.69E+08 1.09311 1.28E+08 1.48977
160 2.88E+09 0.374684 6.22E+08 1.12719 1.49E+08 1.51566
200 2.38E+09 0.483164 6.33E+08 1.12845 1.61E+08 1.54509
300 2.8E+09 0.406857 6.22E+08 1.16412 1.76E+08 1.65014
400 2.47E+09 0.504578 5.73E+08 1.28383 1.69E+08 2.03964
600 2.06E+09 0.668202 7.34E+08 1.0918 3.64E+08 1.23642
800 2.12E+09 0.436325 2.17E+09 0.402016 1.16E+09 0.264892

1000 4.26E+09 0.213601 1.03E+09 1.10629 0 0
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