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a b s t r a c t

This paper presents a new one-dimensional finite elements’ family for the analysis of wrinkling in stiff
thin films resting on a thick elastic substrate. Euler–Bernoulli’s theory is used for the thin film, whereas
the substrate is ideally divided into two parts: 1. a core layer in the neighbourhood of the film where the
displacement field presents high gradients (where an higher-order approximation is required) and 2. the
remaining part of the substrate or bottom layer where displacements change very slowly. Low-order
models allow an accurate yet efficient description of this latter part. Due to its versatility and generality,
Carrera’s Unified Formulation is used to develop the proposed elements’ family. Governing equations’
weak form is derived by means of the principle of virtual displacements and discretised in a finite ele-
ment sense. The asymptotic numerical method is used to solve the resulting non-linear equations’ sys-
tem. Numerical investigations show that the proposed one-dimensional elements are able to capture
the instability phenomena in film-substrate systems. In order to validate the proposed finite element
models, the critical loads and half-wave numbers predicted by the one-dimensional elements are com-
pared with those obtained via two-dimensional finite element analyses and a very good agreement is
found.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Wrinkling instabilities of different shapes (stripes, labyrinths, or
herringbones) are very common in several structural configura-
tions. In particular, they very likely to occur in thin stiff films or
coatings resting on compliant substrates and subjected to in-plane
mechanical or thermal loads, see Bowden et al. [1]. These systems
find several applications in several engineering fields spanning
from optics and electronics to aeronautics and space as, for
instance, optical and acoustic devices or skin layers in sandwich
composites. Furthermore, the interest on soft polymeric substrates
is more and more increasing, see Volynskii et al. [2] and Cao and
Hutchinson [3]. For these reasons, an accurate yet effective model-
ling of wrinkling instabilities is a very important and up-to-date
research topic.

A brief literature follows. In the framework of sandwich panels
design, Allen [4] investigated wrinkles in very stiff thin films when
compared to the substrate they resting on. Niu and Talreja [5]

determined the critical membrane force and the wrinkles wave-
length in sandwich panels on the basis of a linear perturbation
analysis. A unified analytical expression for single-sided face, in-
phase and out-of-phase wrinkling was presented. Huang et al. [6]
proposed a spectral method for modelling wrinkles’ evolution
where a Winkler foundation (a foundation made of linear springs)
was accounted for. The model was extended to the case of a thick
elastic foundation in Huang et al. [7] where wavelength and ampli-
tude for various moduli and thicknesses of the substrate in the case
of wrinkles (a pattern that is invariant in one direction) were inves-
tigated. Audoly and Boudaoud [8–10] studied the straight and her-
ringbones wrinkles as well as the evolution form the former type
(due to a moderate load) to the latter one (large buckling) as the
external load is increased. Wang et al. [11] investigated both global
and local buckling in thin films and membranes resting on elasto-
meric substrates. An analytical expression for the critical condition
separating these two buckling modes was presented and compared
with experimental and numerical results. The post-buckling evolu-
tion of surface wrinkles was studied by Zang et al. [12] by numer-
ical (finite elements) and analytical models. Several higher-order
wrinkling modes were observed. Experiments were also carried
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out. Stemming form the work by Damil and Potier-Ferry [13], Hu
et al. [14] and Xu et al. [15] studied the global and local buckling
of long beams resting on a non-linear elastic foundation by means
of a multi-scale approach. A Fourier series approximation with
slowly varying coefficients was coupled to a refined model by
means of the Arlequin method. In such a manner, accurate solu-
tions were obtained at the structural boundaries where the
approximated approaches are known to provide poor results.

In this paper, a family of one-dimensional finite elements for
the analysis of sinusoidal wrinkling in stiff films resting on thick
elastic substrates is presented. A variable through-the-thickness
kinematics is implemented by means of Carrera’s Unified For-
mulation (CUF), see Carrera [16], Carrera and Giunta [17–19],
Catapano et al. [20] and He et al. [21]. The main aim is to
exploit the features of the problem under investigation to pro-
pose a family of finite elements that yields accurate results with
a number of degrees of freedom as reduced as possible. In par-
ticular, the thin film is modelled via Euler–Bernoulli’s kinemat-
ics. The substrate is ideally divided into two parts where a
variable kinematics based upon Taylor’s polynomial series
expansion is used. The displacement fields expansion order is
not a priori fixed but it is a free parameter. The idea of subdi-
viding the substrate aims at effectively and efficiently modelling
the substrate mechanical behaviour that plays a very important
role in the formation of instability patterns. In a limited neigh-
bourhood of the thin film within the substrate, the displacement
field presents a very high through-the-thickness gradient. On
the contrary, the remaining part of the substrate is almost
unstrained. It is, then, clear that for the former part, called
‘‘boundary or core layer’’, a higher-order kinematics is necessary,
whereas a low-order kinematics is sufficient for the substrate
‘‘bottom layer’’. The governing equations are obtained by the
virtual work principle and their discrete form is obtained within
the framework of the finite element method. The Asymptotic
Numerical Method (ANM) is used to solve the non-linear prob-
lem, see Damil and Potier-Ferry [22], Cochelin et al. [23,24], Hu
et al. [25] and Liu et al. [26]. ANM offers several advantages in
terms of computation time and reliability when compared to
classical non-linear solution strategies such as Newton–Raph-
son’s and arc-length methods. Analysis investigates the critical
wrinkling loads and pattern (in terms of the half-waves num-
ber). The effectiveness of different kinematics is studied. Some
parametric analyses are carried out to obtain some indications
on the appropriate thickness of the core layer. This latter has
been related to the wrinkles’ wavelength. The proposed ele-
ments are assessed towards numerical simulations performed
by the commercial finite element software ABAQUS using two-
dimensional elements. Very accurate results are obtained and
the computational effort is considerably reduced.

2. Model kinematics

A two-dimensional elastic stiff film bound to an elastic soft
compliant substrate is considered, see Fig. 1. Skin’s and substrate’s
thickness are addressed by hf and hs, whereas h is the total thick-
ness. The substrate is ideally divided into a core and a bottom layer
of thickness hc and hb. This division allows to describe the rapid
variation of the displacement field in the neighbourhood of the
thin film by means of high-order kinematic theories, whereas
low-order polynomials are used to model the slowly varying kine-
matics far away from the top membrane. The length and the width
of the structure are denoted by L and b. The longitudinal, the
through-the-width and the transverse coordinate are x; y and z.

The displacement field is:

uTðx; zÞ ¼ uðx; zÞ;wðx; zÞf g ð1Þ

where u and w are the components along x- and z-axis, respectively.
T as superscript stands for the transposition operator. According to a
one-dimensional modelling approach, the variation along the
through-the-thickness direction of the displacement field is a priori
assumed. Classically, a polynomial variation of a fixed order n is
considered. Within CUF framework, a family of refined beam mod-
els can be systematically obtained considering the polynomial
approximation order as a free parameter of the formulation, that
is, it can assume an arbitrary value. The displacement field in Eq.
(1) is approximated as a linear combination of the following mono-
mial terms:

u x; zð Þ ¼ Fs zð Þus xð Þ s 2 0;n½ � � N ð2Þ

Fs represents the through-the-thickness approximating function
and, in general, it can be an element of a generic approximation
base. Within this work, Mac Laurin’s polynomials zn are adopted
as approximation or expansion function. Function us accounts for
the variation along the beam axis. This latter term depends upon
the method used to solve the governing equation. Einstein’s com-
pact notation has been used in Eq. (2): a repeated index implicitly
implies summation over its variation range:

u ¼ u0 þ zu1 þ z2u2 þ � � � þ znun

w ¼ w0 þ zw1 þ z2w2 þ � � � þ znwn

ð3Þ

A different kinematic model is independently defined for the
thin-film and the substrate core and bottom layers:

u x; zð Þ :
uf x; zð Þ ¼ uf

0 xð Þ � z� hfþ2hs

2

� �
wf

0;x xð Þ

wf x; zð Þ ¼ wf
0 xð Þ

z 2 hs;hs þ hf

� �8<: ð4Þ

u x; zð Þ :
uc x; zð Þ ¼ Fsuc

s xð Þ
wc x; zð Þ ¼ Fswc

s xð Þ
z 2 hb;hs½ � s 2 0;nc½ �

�
ð5Þ

u x; zð Þ :
ub x; zð Þ ¼ Fsub

s xð Þ
wb x; zð Þ ¼ Fswb

s xð Þ
z 2 0;hb½ � s 2 0;nb½ �

(
ð6Þ

where superscripts f ; c and b stands for film, core and bottom,
respectively. Euler–Bernoulli kinematics’ is used to model the top
film. Through-the-thickness shear and normal deformations are,
therefore, disregarded there. This assumption is justified by the
thinness of the film. Subscript x preceded by comma stands for dif-
ferentiation versus the axial coordinate. A CUF variable order kine-
matics is used for the substrate core and bottom layers where the
expansion order is nc and nb, respectively.

The continuity of the displacements along the thickness direc-
tion is ensured by the following congruency equations:

uf x;hsð Þ ¼ uc x;hsð Þ
wf x;hsð Þ ¼ wc x;hsð Þ
uc x;hbð Þ ¼ ub x;hbð Þ
wc x;hbð Þ ¼ wb x;hbð Þ

8x 2 0; L½ � ð7Þ
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Fig. 1. An elastic thin stiff film on a thick elastic compliant substrate ideally divided
into core and bottom layers.
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