
Effect of micromechanical models on structural responses
of functionally graded plates

A.H. Akbarzadeh a,b,⇑, A. Abedini b,c, Z.T. Chen b,d

a Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
b Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
c Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
d Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2G8, Canada

a r t i c l e i n f o

Article history:
Available online 28 September 2014

Keywords:
Buckling
Elastic foundation
Functionally graded plate
Fundamental frequency
Micromechanics
Static and dynamic response

a b s t r a c t

This paper examines the influence of alternative micromechanical models on the macroscopic behavior of
a functionally graded plate based on classical and shear-deformation plate theories. Several microme-
chanical models are tested to obtain the effective material properties of a two-phase particle composite
as a function of the volume fraction of particles which continuously varies through the thickness of a
functionally graded plate. The static, buckling, and free- and forced-vibration analyses are conducted
for a simply-supported functionally graded plate resting on a Pasternak-type elastic foundation. The
volume fraction of particles are assumed to change according to the power-law, Sigmoid, and exponential
functions. The governing partial differential equations are solved in the spatial coordinate by Navier solu-
tion, while a numerical time integration technique is employed to treat the problem in the time domain.
Finally, the numerical results are provided to reveal the effect of explicit micromechanical models such as
Voigt, Reuss, Hashin–Shtrikman bounds, and LRVE as well as the semi-explicit model of self-consistent on
the static and dynamic displacement and stress fields, critical buckling load, and fundamental frequency.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

While the anisotropic constitution of conventional laminated
composites leads to delamination, matrix cracking, and adhesive
bond separation due to the stress concentration and geometric dis-
continuities, functionally graded materials (FGMs) with a spatially
continuous transition of material properties alleviate the stress
concentration, optimize the structural performance, and simulta-
neously meet the multiphysical requirements [1,2]. FGMs are com-
posite materials of one or more phases dispersed in a matrix of
another phases; they could be associated with particle composites
where the volume fraction of particles are tailored in an arbitrary
direction. Among the numerous advantages offered by FGMs, one
can refer to reduced multiphysical stresses, higher fracture
toughness, reduced intensity factor, and improved residual stress
distribution [3,4]. Due to the application of functionally graded
(FG) thin/thick-walled structures in aerospace, pressure vessels,

electronics, and medical industries, the accurate prediction of the
behavior of FG structural components is of great significance [5,6].

Shell-like structures made of composite materials and FGMs
play a significant role in engineering of weight-efficient structures.
To effectively describe the structural behavior, different mathe-
matical models for shell theories have been developed [7]. Because
of the computational cost of the three-dimensional (3D) elasticity
analysis, lots of efforts have been devoted to develop a consistent
equivalent single-layer (ESL) model for structural analysis in which
the 3D structural element is replaced by an equivalent two-dimen-
sional (2D) layer with a complex constitutive equation [1]. Since
the effect of transverse shear deformation is neglected in the clas-
sical laminated plate theory (CLPT), different shear-deformation
theories such as the first-order shear deformation theory (FSDT)
and third-order shear deformation theory (TSDT) have been intro-
duced. While FSDT assumes a constant shear stress through the
thickness of structure and therefore needs a shear correction fac-
tor, the TSDT possesses a quadratic variation for shear stresses
and thus no shear correction factor is needed [8,9].

Since the emergence of FGMs, the structural behavior of uncon-
strained/constrained FG components including static, stability, and
free- and forced-vibration analyses under multiphysics loading has
been the subject of several theoretical and experimental

http://dx.doi.org/10.1016/j.compstruct.2014.09.031
0263-8223/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Mechanical Engineering, McGill
University, Montreal, QC H3A 0C3, Canada. Tel.: +1 514 398 6296; fax: +1 514
398 7365.

E-mail addresses: hamid.akbarzadeh@mcgill.ca, h.akbarzadeh@unb.ca
(A.H. Akbarzadeh).

Composite Structures 119 (2015) 598–609

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2014.09.031&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2014.09.031
mailto:hamid.akbarzadeh@mcgill.ca
mailto:h.akbarzadeh@unb.ca
http://dx.doi.org/10.1016/j.compstruct.2014.09.031
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


investigations [10–20]. For instance, elasticity solutions were
obtained in [21–23] for FG beams and plates subjected to electro-
mechanical loading. A microstructure-dependent nonlinear beam
theory, using the modified, couple stress theory, has recently been
reported by Reddy [24] and the corresponding nonlinear static
problem of FG beams was studied in [25] using the finite element
method. Refined plate theories have also been developed in [26,27]
to accurately predict the free-vibration behavior of FG plates. A ser-
ies of closed-form and semi-analytical solutions for structural
responses of FG thick plates under transient thermomechanical
loading and a moderately-thick variable stiffness plate were pre-
sented by Akbarzadeh et al. [28–31]. The 3D elasticity and finite
element models were also given in [32,33] for a dynamic analysis
of single/multi-direction FG and sandwich plates. Moreover, to
avoid the instability of structures working at different types of
multiphysics loading, the buckling analysis of FG components has
been conducted in several studies. For instance, closed-form solu-
tions for thermomechanical buckling of FG thin/thick plates have
been presented in [34–36].

While most papers in the literature on FGMs employ the simple
rule of mixture to obtain the effective material properties, a proper
micromechanical model should be used to accurately predict the
effective multiphysics properties. As Eshelby elucidated, the objec-
tive of micromechanics is to quantify the effect of microstructure
on the multiphysics behavior of materials by the application of
continuum mechanics to a small-scale [37,38]. Among models in
the literature, a few standard micromechanical models could be
mentioned. Voigt’s [39] and Reuss’ [40] approximations are the
simplest models used to evaluate the effective material properties
of composites. Using the variational principle, Hashin and Shtrik-
man [41,42] established the upper and lower bounds of the effec-
tive material properties. Mori–Tanaka [43] model was introduced
to calculate the average internal stresses in the matrix containing
an eigenstrain. Benveniste [44] also reformulated the Mori–Tanaka
model in order to apply it to composite materials. Finally, the dou-
ble inclusion methods were proposed by Lielens [45] and Nemmat-
Nasser and Hori [46] based on an interpolation of the Mori–Tanaka
scheme as a function of the volume fraction of the phases to pre-
dict the effective properties of composites.

Several micromechanical models of FGMs have been reviewed in
[47–51]. To assess the effect of the micromechanical models on the
structural responses of FG plates, this paper presents the static,
buckling, and free- and forced-vibration analyses for simply-
supported FG plates resting on an elastic foundation. Different
micromechanical models are examined to obtain the effective
material properties of FGMs with power-law, Sigmoid, and expo-
nential function distributions of volume fraction within the thick-
ness of the plate. Using an analytical method along with a
numerical time integration technique, the governing equations
are treated and the effects of Voigt, Reuss, Hashin–Shtrikman
bounds, LRVE, Tamura, and self-consistent models on the structural
responses of the FG plate are investigated.

2. Effective properties of FGMs

FGMs possess a continuous variation of material constituents in
spatial coordinates. Such a graded microstructure could be exam-
ined as a continuous distribution of discrete particles in a matrix
of a reinforced composite. The existing micromechanical models
could be extended to predict the effective material properties of
FGMs for an entire range of volume fraction (VF) of constituents
ð0 6 VF 6 1Þ [49].

Consider a two-phase FG plate composed of particles or inclu-
sions and a matrix. While FGMs are typically made from a mixture
of ceramics and metals, the material constituent could be,

arbitrarily, any two dissimilar materials. The composition of two
materials is assumed to vary through the thickness of the plate
(z-direction, where z is downward and normal to the middle sur-
face of the plate). The volume fraction of inclusions could vary
through the thickness in the form of power-law (P-FGM), Sigmoid
(S-FGM), or exponential (E-FGM) [52–55]:
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where VFt and VFb are, respectively, the volume fraction of inclu-
sions at the top ðz ¼ �h=2Þ and the bottom ðz ¼ h=2Þ of FG plates.
Furthermore, n and h stand for the non-homogeneity index and
thickness of the plate. The non-homogeneity index n could be used
to optimize the structural performance of FGMs. In this work, the
Voigt, Reuss, Hashin–Shtrikman bounds, LRVE, Tamura, and self-
consistent methods are employed to obtain the effective material
properties as a function of inclusion volume fraction.

2.1. Voigt and Reuss

The simplest micromechanical model to achieve the equivalent
macroscopic material properties is the rule of mixture which was
first formulated by Voigt [39]. The Voigt idea was to determine
material properties by averaging stresses over all phases with the
strain uniformity assumption within the material. The Voigt
model, that is frequently used in most FGM analyses, estimates
Young’s modulus ðEÞ and Poisson’s ratio ðmÞ of FGMs as [56,57]:

EðzÞ ¼ EiVFðzÞ þ Emð1� VFðzÞÞ;
mðzÞ ¼ miVFðzÞ þ mmð1� VFðzÞÞ ð2Þ
where the subscripts ‘‘i’’ and ‘‘m’’ denote the material properties of
matrix and inclusions (particles). On the other hand, Reuss [39]
assumed the stress uniformity through the material and obtained
the effective properties as [56,57]:

EðzÞ ¼ EiEm

Eið1� VFðzÞÞ þ EmVFðzÞ ;

mðzÞ ¼ mimm

mið1� VFðzÞÞ þ mmVFðzÞ ð3Þ

As shown by Hill [58], the Voigt and Reuss estimations provide,
respectively, the upper and lower bounds for Young’s modulus for
the entire range of inclusion volume fraction. However, as Zimmer-
man [57] observed, Poisson’s ratio could not be bounded to either
the Poisson’s ratios predicted by Voigt or Reuss, or even the Pois-
son’s ratios of matrix and inclusions. It is worth mentioning that
the effective mass density q is obtained by the following rule of
mixture, regardless of the utilized micromechanical model:

qðzÞ ¼ qiVFðzÞ þ qmð1� VFðzÞÞ ð4Þ

2.2. Hashin–Shtrikman bounds

Using the variational principle for heterogeneous linear elastic-
ity, Hashin and Shtrikman derived closed-form expressions for
upper and lower bounds of the effective elastic properties. For
two-phase materials with a random distribution of spherical
particles, the bounds on effective shear ðGÞ and bulk ðKÞ moduli
are obtained as [56]:
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