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a b s t r a c t

Free vibrations of a cantilever composite circular cylindrical shell are considered in this paper. The edge
of the shell is fully clamped at one end of the cylinder and is free at the open section of the other end.
Variational equations of free vibrations are derived based on Hamilton’s principle and the problem is
solved using the generalised Galerkin method. Analytical formulas enabling calculations of the funda-
mental frequency are obtained and verified by comparison with the results of a finite element modal
analysis. The efficiency of the analytical solution is demonstrated using numerical examples including
the design analysis of composite shells subject to constraints imposed on the fundamental frequency.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A cylindrical shell is one of the most widely used analytical/
mechanical models of thin-walled structures designed in the aero-
space and many other industries. A modal analysis of the cylindri-
cal shells is often a necessary part of the design procedures
normally employed when the structural components are subjected
to loads varying in time. The relevant effective applied theories and
methods of analysis were created and developed over the years by
many researchers. Results of these studies related to the analysis of
dynamic parameters of the cylindrical shells can be found in
numerous papers and monographs, e.g. published by Soedel [1],
Ventsel and Krauthammer [2], Goldenveizer et al. [3], Volmir [4]
and handbooks authored by Gontkevich [5], Leissa [6], Blevins
[7], and many others. In most cases considered in the literature,
the solutions were found for the thin-walled cylinders having both
ends supported in some way. However, there is a certain practical
interest to the studies of the dynamic behaviour of the shells with
the clamped-free end support (i.e. when the edge of the shell is
fully clamped at one end of the cantilever cylinder and is free at
the open section of the other end). A brief review of a number of
publications considering vibrations of such shells is presented by
Leissa [6]. Applications of the Rayleigh–Ritz method to the solution
of the vibration problems for cylindrical cantilever shells are
reported in the papers by Sharma and Johns [8], Sharma [9,10]
and Warburton and Higgs [11]. Tottenham and Shimizu [12] inves-
tigated vibrations of cantilever cylindrical shells using a matrix

progression method. An integral equation technique was used to
determine the natural frequencies of vibration of the clamped-free
shells in the article by Srinivasan and Sankaran [13]. Large-ampli-
tude nonlinear vibrations of a cantilever circular cylindrical shell
were numerically investigated by Kurylov and Amabili [14]. An
asymptotic analysis accounting for edge effect was undertaken
by Louhghalam et al. to examine the dynamic characteristics of
composite thin cylindrical shells [15]. Soedel [16] used Galerkin’s
method with shape functions selected in the form of general beam
mode shapes to derive a frequency formula for isotropic circular
cylindrical shells with various boundary conditions. Effects of
boundary conditions on the free vibration characteristics for a
multi-layered cylindrical shell using the Ritz method where beam
functions were used as the axial modal functions were studied by
Lam and Loy [17]. Dai et al. developed a method to study the free
vibrations of an isotropic circular shell with various boundary con-
ditions in which the displacements were represented as Fourier
series, such that both the governing differential equations based
on Flugge’s theory and the boundary conditions were satisfied
[18]. Semi-analytical approaches to the free vibration analyses of
axisymmetric laminated shells with various combinations of
boundary conditions were developed by Pinto Correia et al.
[19,20] and Santos et al. [21]. Liu et al. derived exact characteristic
equations for free vibrations of thin-walled orthotropic cylindrical
shells [22].

Most of the results that could be found in the literature related
to the vibration analysis of the cantilever orthotropic shells were
obtained using numerical solutions, implementation of which
requires certain computational effort. In practice, however, it is
often sufficient to determine just one, fundamental (i.e. the lowest
natural) frequency to assess the stiffness of the structure. The value
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of this frequency provides a convenient criterion of the stiffness
and mass efficiency in structural design. This is particularly
relevant to aerospace structural components. For example, the
criterion can be applied to the design of the cantilever cylindrical
shell representing part of the structure of a space telescope.
Considering this, it would be advantageous to have an analytical
formula that could enable fast and reliable calculations of the fun-
damental frequency for the clamped-free composite cylindrical
shells. This could save a substantial amount of time especially at
early stages of design and be particularly useful for the design
optimisation. Such a solution has been obtained in this work for
the cantilever composite cylindrical shell. Variational equations
of free vibrations are derived based on Hamilton’s principle and
the problem is solved using the generalised Galerkin method
which was also successfully applied by the authors to the buckling
analysis of a composite cantilever circular cylindrical shell sub-
jected to uniform external lateral pressure [23]. The deflections
of moving shell are approximated taking into account an assump-
tion, according to which the shape of the cylinder generator
coincides with a fundamental mode shape of a cantilever beam.
Cubic and second order algebraic equations enabling the analytical
solution of the problem under consideration are derived. Using this
solution, a number of example problems have been solved. The
results of the analyses are verified by comparison with those
obtained using the Finite Element Method (FEM).

2. Problem formulation

Consider a thin-walled composite orthotropic cylindrical shell of
radius R and length l with the middle surface referred to the curvi-
linear coordinate frame abc as shown in Fig. 1. It is assumed that the
shell is composed from a large number of elementary plies, so the
composite wall material (symmetrical and balanced laminate) can
be treated as homogeneous and orthotropic. The edge of the shell
at a = 0 is fully clamped and the edge at the open end (a = l) is free.

The variational equations of free vibrations are derived using
Hamilton’s principle. In the case under consideration, an action
integral has the following form:

S ¼
Z t2

t1

Ldt ð1Þ

where t is time, t2 � t1 is the time interval in which the shell motion
is considered, and L is the Lagrange function. The latter is equal to
the difference between kinetic and potential energies of the shell
T and U, i.e.

L ¼ T � U ð2Þ

In this equation, the kinetic energy of the shell is determined as
follows:
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where u, v, and w are the displacements of the middle surface of the
shell along the axes a, b, and c (see Fig. 1), respectively; Bq = qh
characterises the inertia properties of the shell (q is the material
density and h is the shell thickness). The potential energy is
presented in the following form [24]:
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where Na, Nb, and Nab are the membrane stress resultants; Ma, Mb,
and Mab are the bending and twisting couples; ea, eb, and eab are the
membrane strains and ja, jb, and jab are the curvatures of the
middle surface.

Considering the free vibrations, the displacements, strains and
stress resultants and couples can be presented as follows:
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where x is the circular natural frequency of the shell vibrations.
Substituting Eq. (5) into Eq. (3) and Eq. (6) into Eq. (4) yields

T ¼ Tmaxcos2xt; U ¼ Umaxsin2xt ð7Þ

where Tmax and Umax (the maximum values of the kinetic and poten-
tial energies) are

Tmax¼
1
2
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Substituting Eq. (7) into Eq. (2), the latter is transformed into the
following form:

L ¼ Tmaxcos2xt � Umaxsin2xt ð9Þ

It is assumed that the time interval in which the shell motion is
considered is equal to the period of vibrations with the frequency x.
ThenFig. 1. Clamped-free circular cylindrical shell.

A.V. Lopatin, E.V. Morozov / Composite Structures 119 (2015) 638–647 639



Download English Version:

https://daneshyari.com/en/article/251506

Download Persian Version:

https://daneshyari.com/article/251506

Daneshyari.com

https://daneshyari.com/en/article/251506
https://daneshyari.com/article/251506
https://daneshyari.com

