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a b s t r a c t

This paper presents a new numerical methodology for predicting the effective elastic properties of com-
posite materials. The material microstructure was generated in a repeated unit cell, the so-called repre-
sentative volume elementary (RVE) using a developed microstructure generator. The homogenisation
was first performed using the variational asymptotic method for unit cell homogenisation (VAMUCH)
and by applying the eXtended Finite Element Method (XFEM) directly. Moreover, we propose a new
methodology to introduce the XFEM into the VAMUCH principle. Thus, the obtained new scheme (i.e.
the eXtended VAMUCH) uses the Variational Asymptotic Method on nonconforming meshes. All the
implemented methods were validated and compared each other using existing benchmarking tests, then
more complex microstructures are investigated. The obtained results were globally very well in agree-
ment. The proposed methodology was found efficient to determine accurately the composite properties
and showed several advantages.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Effective properties of heterogeneous materials can be identi-
fied using experimental tests, analytical homogenisation models
or numerical homogenisation procedures, see [1–4]. However, an
important class of heterogeneous materials have a periodic micro-
structure where modelling the behaviour requires specific treat-
ment. For instance, the interaction between constituents is not
taken into account in mean field based methods. Moreover, it has
been proven that the spatial variability in the microstructure influ-
ences the overall behaviour of the material. Hence, the choice of
the representative volume elementary (RVE) is crucial in the
homogenisation procedure. Homogenisation based on Finite Ele-
ment Method (FEM) that uses the RVE concept is increasing in
these last decades. In such methods, the FEM can be introduced
directly by considering periodic boundary conditions under some
special loadings. Another accurate method that uses the FEM to
approximate a virtual displacement is called the variational
asymptotic method for unit cell (UC) homogenisation (VAMUCH).
The effective properties can be obtained by considering periodic
boundary conditions applied to the RVE without any loading. These
FEM based methods are very attractive and accurate however they
suffer from the FEM drawbacks such as the requirement of the

mesh to be aligned to the discontinuities. Another limitation is
the distortion of the finite elements under large deformation and
the necessity of remeshing when the geometries evolve. To allevi-
ate these drawbacks, the eXtended Finite Element Method (XFEM)
is introduced. The XFEM has been successfully applied to different
problems such as crack modelling and crack growth in layered
composite structures [5–12]. The mesh can be non-conform to
the material discontinuities and/or boundaries and no re-meshing
is required. Basically, the concept of the XFEM is the enrichment of
the shape functions of the elements crossed by the discontinuities
or the singularities by special functions using the partition of unity
principle. The expression of these functions depends on the nature
of the discontinuity (i.e. weak discontinuity, strong discontinuity)
and the singularity as well as the nature of the medium (i.e. dense,
porous). To perform easily and efficiently the enrichment, XFEM
adopts the level set function concept; first to locate discontinuities
and in many cases to express the enrichment functions. For
instance, the signed distance between nodes and inclusion/matrix
interfaces distinguishes inclusions from the matrix boundaries.
This is achieved by the change of the level set function sign, conse-
quently the interface is located implicitly by the zero level set.

This paper provides two methodologies to predict the material
effective properties; the direct XFEM based homogenisation and
the XFEM coupled with VAMUCH, see [13]. Because the two
schemes use the RVE concept, we have first developed an algo-
rithm able to generate randomly microstructures. The inclusions
shape and volume fraction can be tailored automatically where
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periodicity of the microstructure is respected and the overlapping
of inclusions is avoided. Once the microstructure is generated, a
level set function is calculated on the mesh nodes (structured
quadrilateral mesh in most cases) by which all the inclusion/
matrix interfaces are located. XFEM allows the mesh to be not
aligned with the interfaces and the jump in deformation caused
by the material mismatch is handled by the introduction of the
enrichment functions. In our model, this weak discontinuity is
enhanced by using the modified absolute function introduced in
[7]. After that, the periodic boundary conditions are applied to
the RVE in both schemes.

The paper proposes an efficient method for predicting the effec-
tive elastic properties of the composite without any tedious tasks
linked to the mesh requirements in one hand and capable to take into
account complex geometries and interaction between constituents
in the other hand. Thus, whatever the degree of complexity of the
used RVE, simple regular meshes can be used to perform the homog-
enisation. This fact makes an enormous difference between the pro-
posed method and FEM based methods. To validate the implemented
method, the obtained results are compared with those obtained
using linear averaging relations and those reported in the literature.

The paper is arranged as follows: first, the micro-structure gen-
eration algorithm is presented, then the concept of XFEM and level
set function is briefly reviewed and adapted to the context of com-
posite materials, then the discretization of the governing equations
is reported. XFEM and VAMUCH Homogenisation techniques are
detailed in the third section. Further, several numerical applica-
tions are performed to compare between the two schemes and to
discuss the obtained results. Finally, the paper is ended by a brief
conclusion.

2. Microstructure generator

Models with periodic boundaries are usually used to simulate
bulk material structures. Our developed algorithm is designed to
simulate 2D microstructures (it can be extended to 3D case).
Knowing the volume fracture of the composite and the inclusions
size, the number of inclusions is first calculated using Eq. (1).
Within a generated RVE, the inclusions size is kept constant and
their shape is assumed to be elliptical in the general case (circular
shaped inclusions are special case). The inclusions are generated in
a target square using the random sequential addition (RSA). Each
inclusion centre ðxc; ycÞ will be on a random location in the target
space (commonly, RVE space of 1� 1 area).

ninc ¼ v f A=ðp ls lbÞ: ð1Þ

In Eq. (1), ninc is the total number of inclusions, v f is the inclusions
volume fraction, A is the RVE area, ls; lb are respectively, one-half of
the ellipse’s major and minor axes. The random location of the
ellipse centre leads to situations where part of the inclusion pene-
trates the sample external boundaries (rigid boundaries). In this
case and in order to produce periodic distribution, the inclusion is
cut along the concerned edge and the excess part is reproduced in
the inner part of the opposite edge. This automatic procedure is
activated for every inclusion/edge intersection. Another important
condition to be respected when generating the microstructure is
the minimal allowed distance dmin between inclusions. This condi-
tion is necessary to perform an efficient meshing of the domain
and avoids overlapping of inclusions. It is found that the optimal
minimal allowed distance is given by: dmin ¼ 0:035 ls, see [14]. The
main followed steps to build a randomly distributed elliptical inclu-
sions with a given volume fraction is summarised in the flowchart
of Fig. 1. Noteworthy, the computational time is proportional to
the volume fraction, this is due to the increase of the trial steps
number. The minimal allowed distance between inclusions is the

main factor undermining the generation process, it imposes severe
restrictions on the volume fraction in some cases. In order to reduce
the computation cost, this condition is checked between two points
from two neighbour inclusions if and only if the distance between
the two fictitious enveloping circles is little than the allowed dis-
tance, as depicted in Fig. 2. These fictitious circles have the same
centre as the elliptic inclusions and have a radius of lb.

Once the total number of inclusions is reached, the inclusions
centre coordinates ðxci; yciÞ and the ellipses orientation angles hi

are saved and the microstructure generation is achieved. In the
next step, a level set function is calculated for the XFEM homoge-
nisation requirements and an implicit representation of the
obtained RVE can be performed. For comparison purposes, in this
work we added an extra task needed for FEM based homogenisa-
tion which consists to draw explicitly the obtained microstructure.
The final configuration is sent to a GMSH meshing software, see
[15], where the RVE is meshed by triangular conforming elements
which are required for standard VAMUCH homogenisation.

3. Homogenisation procedure

The RVE concept was used to develop analytical homogenisa-
tion models for linear elasticity after which many methods have
been emerged. However, most of these methods consider RVEs
with simple geometries and do not take into account inclusions
interaction. Recently, more sophisticated methods are introduced
e. g. effective self-consistent scheme (ESCS) or interaction direct
derivative (IDD) and showed high performances regarding to their
preceding ones, see Zheng and Du 2001, Du and Zheng 2002. Com-
monly, the FEM is very used to model the mechanical response, but
the XFEM is preferred when domains present complex geometries
or evolving boundaries, and the fundamentals of the homogenisa-
tion scheme remain the same. These so-called unit cell methods
can handle easily the complexity of the microstructure and take
into account the interaction between inclusions.

3.1. Homogenisation using VAMUCH

VAMUCH micromechanical model was introduced by Yu and
Tang [13], it consists to expand the energy functional asymptoti-
cally with less assumption regarding to the mathematical homog-
enisation theory (MHT). VAMUCH has many specific advantages
mainly the fact that no external loading is needed to perform the
computation and the effective material properties are obtained
after only one analysis. The problem formulation consists to mini-
mise the following functional of the total potential energy within
the UC, see Yu and Tang [13], and Koutsawa et al. [16] (see Fig. 3).
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where n stands for the number of the repeated unit cells that form an
imaginary unbounded and unloaded heterogeneous material which
has the same micro-structure as the loaded and bounded one, C is
the fourth order elasticity tensor of each UC constituents, � is the
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