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a b s t r a c t

In this paper, elastoplastic buckling behaviors of functionally graded material cylindrical shells under
axial compression are investigated with Donnell shell theory and J2 flow constitutive relation of function-
ally graded materials. The nonlinear material properties vary smoothly through the thickness, and a
multi-linear hardening elastoplasticity is considered in the analysis. The buckling government equations
are solved by Galerkin method, and the semi-analytical solution of the critical load is given. Numerical
results from the present theory are derived by an iterative procedure. The theoretical elastoplastic critical
loads are well verified by those of ABAQUS code, which includes both the material and geometrical non-
linearities. The elastic, elastoplastic, and plastic buckling regions of functionally graded cylindrical shells
can be effectively distinguished through the present method, and various effects of the material nonlin-
earity, the dimensional parameters and the power law exponent are investigated.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are new composites,
made from a mixture of ceramic and metal constituents [1]. The
mixture ratio of the two constituents changing smoothly, and the
material properties vary continually through the thickness, which
can greatly avoid stress concentration aroused by discontinuity
of material properties, typically seen in laminate and fiber-rein-
forced composites.

In the research field of FGM plates and shells, many researches
have been addressed for the elastic buckling problems. Javaheri
and Eslami [2] and Malekzadeh et al. [3] investigated buckling of
rectangular FGM plates under in-plane loads. Li and Batrab [4] and
Wu et al. [5] focused on buckling and thermal buckling issues. Shen’s
works cover a wild range of postbuckling problems [6]. Meanwhile,
Sofiyev [7] systemically study the linear dynamic buckling.

The elastoplastic or plastic buckling performances of plates and
shells have been investigated extensively, and this research field is
one of most important components in structural stability theory.
Durban and Zuckerman [8], Kadkhodayan and Maarefdoust [9]
concerned with elastoplastic buckling of a rectangular plate, with
various boundary conditions, under uniform uniaxial or biaxial
compression. Mao and Lu [10] investigated plastic buckling of
homogeneous cylindrical shells under axial compression by both
J2 flow and deformation theories. Although many literatures had

been addressed for the elastoplastic buckling behaviors of homoge-
neous plates and shells, little had been concerned with those of
composite ones, especially for FGM plates and shells.

The continuously varying material properties of FGMs can be
depicted by a homogenized mixture rule (named TTO model),
initially proposed for metal alloys by Tamura et al. [11]. By intro-
ducing a proper stress transfer parameter, it can be used in FGMs
[12,13]. An inverse analysis procedure, based on indentation tests,
has been developed by Nakamura et al. [14,15] to identify consti-
tutive parameters. With this model, Jahromi et al. [16] investigated
residual stress during the fabrication of FGM vessels, and Jin et al.
[17] studied the fracture issues in elastic–plastic FGMs. Besides,
Akis [18] presented elastoplastic analysis for internally pressurized
FGM spherical pressure vessels using small deformation theory.
Results showed different modes of plasticization from the homoge-
neous spherical pressure vessel may take place due to the radial
variation of the grading parameters. In this paper, elastoplastic
buckling behaviors of FGM cylindrical shells under uniform axial
compression are investigated by employing Donnell shell theory
and J2 flow constitutive relation of FGMs.

2. Formulation

For an uniform axial compressed FGM cylindrical shell, with
thickness h, length L, and mean radius R, the coordinate system
is placed on the middle surface of the shell, with the origin o at
its end and the coordinate axes x, y, and z in the axial, circumferen-
tial, and the inward normal directions, as shown in Fig. 1.
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The incremental strain components of thin cylindrical shells are

e1 ¼ e0
1 þ zK1 ð1Þ

where e1¼ exx1 eyy1 exy1½ �T; K1¼½Kxx1 Kyy1 Kxy1 �T; e0
1¼½e0

xx1 e0
yy1 e0

xy1 �
T
.

e0
xx; e0

yy; c0
xy are the strain components on the middle surface and

Kxx, Kyy, Kxy are the curvature components and the subscript ‘‘1’’
denotes the increment of the corresponding parameters.

According to the nonlinear von Kárman strain–displacement
relations, we have

e0
xx1 ¼ u1;x þ

1
2
ðw1;xÞ2; e0

yy1 ¼ v1;y �
w1

R
þ 1

2
ðw1;yÞ2;

e0
xy1 ¼ u1;y þ v1;x þw1;xw1;y ð2Þ

Kxx1 ¼ �w1;xx; Kyy1 ¼ �w1;yy; Kxy1 ¼ �2w1;xy ð3Þ

where u, v, w are displacements along x, y, z, and the subscript

comma denotes partial derivative, such as u1;x ¼ @u1
@x ; w1;xy ¼ @2w1

@x@y .

Using the constitutive relation of FGM given in Section 3, the
incremental stress components are given as

r1 ¼ Ae1 ð4Þ

where r1 ¼ ½rxx1 ryy1 rxy1 �T and the matrix A is given in the
Appendix A.

For thin cylindrical shells, the incremental internal force and
moment components

fNij1;Mij1g ¼
Z

l
rij1f1; zgdz; ði; j ¼ x; yÞ ð5Þ

It can be rewritten in matrix form as

N1

M1

� �
¼

eA eBeB eD
" #

e0
1

K1

" #
ð6Þ

in which N ¼ Nxx Nyy Nxy½ �T; M ¼ Mxx Myy Mxy½ �T and eA; eB; eD
are defined in the Appendix A. It should be noted that, the integral
range l should be divided into two subsections according to the
material stress state.

The above equation can be rewritten as

e0
1

M1

" #
¼

bA bBbC bD
" #

N1

K1

� �
ð7Þ

where bA; bB; bC ; bD are given in Appendix A.
The basic equilibrium equations of cylindrical shells of Donnell

type are

Nxx;xþNxy;y¼0; Nxy;xþNyy;y¼0

Mxx;xxþ2Mxy;xyþMyy;yyþ
Nyy

R
þNxxw;xxþ2Nxyw;xyþNyyw;yyþq¼0

ð8Þ

in which, q is the lateral pressure.
The deflection, internal force and moment of the shell can be

divided as

w ¼ w0 þw1; Nij ¼ Nij0 þ Nij1; Mij ¼ Mij0 þMij1 ð9Þ

where the subscript ‘‘0’’ denotes the prebuckling state. Then the
incremental form of the above equations are given as

Nxx1;xþNxy1;y¼0; Nxy1;xþNyy1;y¼0

Mxx1;xxþ2Mxy1;xyþMyy1;yyþ
Nyy1

R
þNxx0w1;xxþ2Nxy0w1;xyþNyy0w1;yy¼0

ð10Þ

The deformation compatible equation of cylindrical shell is given by
Eq. (2).

e0
xx1;yy þ e0

yy1;xx � e0
xy1;xy ¼ �

w1;xx

R
þ ðw1;xyÞ2 þw1;xxw1;yy ð11Þ

Introducing the Airy’s stress function u1(x,y) which satisfied

Nxx1 ¼ u1;yy; Nyy1 ¼ u1;xx; Nxy1 ¼ �u1;xy ð12Þ

Thus, the first two equations satisfied automatically.
By eliminating the nonlinear terms, and substituting Eqs. (12)

into Eqs. (7), then, Eq. (11) and the last equation of Eq. (10)
turns into

Iu1
1 u1 þ Iw1

1 w1 þ
1
R

w1;xx ¼ 0

Iu1
2 u1 þ Iw1

2 w1 þ
1
R
u1;xx þ Nxx0w1;xx þ 2Nxy0w1;xy þ Nyy0w1;yy ¼ 0

ð13Þ
where Ip

i ði ¼ 1;2; p ¼ u1;w1Þ are differential operators defined as
follows.

Ip
i ¼ Cp

5i�4p;yyyy þ Cp
5i�3p;xyyy þ Cp

5i�2p;xxyy þ Cp
5i�1p;xxxy þ Cp

5ip;xxxx

ð14Þ

in which Cp
5i�j ðj ¼ 1;2;3;4Þ are given in Appendix A.

Eqs. (13) represent the buckling government equations of
elastoplastic FGM cylindrical shells, which will be used to derive
the buckling critical condition.

3. Material constitutive relation

FGMs are inhomogeneous materials of smoothly varying cera-
mic/metallic mixture ratio through the thickness. Generally, the
volume fraction of the ceramic constitute is assumed to submit
the power law distribution as [6]

Vc ¼ ð0:5þ z=hÞk; Vc þ Vm ¼ 1 ð15Þ

where V denotes the volume fraction of constituents. The subscripts
c, m respectively correspond to the ceramic and metallic consti-
tutes. k is the power law exponent, which is a critical parameter
to control the distribution of the constituents in FGMs.

In general, ceramic materials are brittle materials of relatively
higher elastic modulus and strength than those of metallic materi-
als, which are typically ductile materials. According to the TTO
model for FGMs, the ceramic constituents in FGMs are assumed
to be elastic when deformation takes places. Material flows arouse
mainly by the plastic flowing of the metallic constituent when the
stress state beyond its yield limit. Thus, the multi-linear hardening
elastoplastic material properties of FGMs along the thickness can
be defined as [14,17].

E ¼ qþ Ec

qþ Em
EmVm þ EcV c

� ��
qþ Ec

qþ Em
Vm þ V c

� �
m ¼ mmVm þ mcV c

rY ¼ rYm Vm þ
qþ Em

qþ Ec

Ec

Em
V c

� �
H ¼ qþ Ec

qþ Hm
HmVm þ EcVc

� ��
qþ Ec

qþ Hm
Vm þ V c

� �
ð16Þ
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Fig. 1. Axial compressed FGM cylindrical shell.
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