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a b s t r a c t

For the first time, we have obtained accurate numerical solutions for wave propagation in
inhomogeneous materials under impact loading. We have extended the earlier developed numerical
approach for elastodynamics problems in homogeneous materials to inhomogeneous materials. The
approach includes the two-stage time-integration technique with the quantification and the filtering
of spurious oscillations, the special design of non-uniform meshes as well as includes the standard finite
elements and the elements with reduced dispersion. Similar to wave propagation in homogeneous
materials in the 1-D case, we have obtained very accurate results for composite and functionally graded
materials using the linear elements with lumped mass matrix and the explicit central difference method.
We have also shown that specific non-uniform meshes yield much more accurate results compared to
uniform meshes. We have also shown the efficiency of the finite elements with reduced dispersion
compared with the standard finite elements.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the paper we will consider the accurate finite element mod-
eling of wave propagation problems in inhomogeneous materials
such as composite and functionally graded materials. The known
finite element techniques for inhomogeneous materials (e.g., see
[1–12]) are usually based on the explicit introduction of material
properties as functions of the coordinates in the expressions for
the mass and stiffness matrices. In some approaches, these proper-
ties are assumed to be constant within each element (but different
for different elements), in other approaches they are approximated
in terms of the standard finite element shape functions (the
so-called graded elements). As shown in [4], the difference in
numerical results between these formulations is not big. However,
we have not seen in the literature the recommendations of how to
select the dimensions of the finite elements depending on the
variation of material properties. In many publications (e.g., see
[1–12]), uniform meshes and meshes independent of material
properties are used in calculations. However, the properties for
composite and functionally graded materials can significantly dif-
fer in different locations, and an improper selection of the sizes
of finite elements may lead to very inaccurate results or to a pro-
hibitively large computation time for wave propagation problems

if very fine meshes are used. Another issue with the finite element
modeling of wave propagation in inhomogeneous material is
related to the appearance and the quantification of spurious
high-frequency oscillations. These oscillations can be very large
(especially under impact loading) and can destroy the accuracy
of numerical results. We should mention that accurate numerical
results for wave propagation in inhomogeneous materials are very
important and necessary for many engineering applications (e.g.,
see [13] for shock mitigation by the use of functionally graded
materials).

In our previous papers [14–21] we have developed the new
numerical approach for wave propagation in homogeneous
materials. This approach includes the two-stage time-integration
technique with the stage of basic calculations as well as the
filtering stage with the quantification and the filtering of spurious
oscillations. This technique yields accurate numerical results for
wave propagation problems at any loading (including impact load-
ing) in the 1-D, 2-D and 3-D cases. The approach is implemented
for implicit and explicit time-integration methods as well as for
the low- and high-order standard finite elements, the spectral ele-
ments, isogeometric elements, and the linear elements with
reduced dispersion. In this paper we will extend our numerical
approach for elastodynamics problems to inhomogeneous materi-
als. It will include the two-stage time-integration technique with
the quantification and filtering of spurious oscillations, the special
design of non-uniform meshes as well as will include the standard
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finite elements and the elements with reduced dispersion. Similar
to wave propagation in homogeneous materials in the 1-D case, we
will obtain very accurate results for composite and functionally
graded materials using the linear elements with the lumped mass
matrix and the explicit central difference method with the time
increments equal to the stability limit. We will also show that
specific non-uniform meshes yield much more accurate results
compared to uniform meshes. For the first time, we will obtain
accurate numerical solutions for wave propagation in inhomoge-
neous materials under impact loading. These numerical solutions
do not include spurious oscillations and converge at mesh refine-
ment (as shown below, existing approaches may yield divergent
results at mesh refinement; see Figs. 12 and 14(a) and (b)). We will
also show the efficiency of the linear finite elements with reduced
dispersion compared with the standard linear finite elements. In
our previous papers [15,20] we have shown that for elastodynamics
problems the linear elements with reduced dispersion are more
efficient (i.e., require less computation time at the same accuracy)
than the standard quadratic elements (see [15]) and at moderate
observation times they are more efficient than the high-order
standard, spectral and isogeometric elements (see [20]).

The paper consists of the extension of the two-stage time-
integration technique to wave propagation in inhomogeneous
materials (Section 2.1), the design of non-uniform meshes for these
problems (Section 2.2), and the examples of the accurate modeling
of wave propagation problems in composite and functionally
graded materials under impact loading (the most challenging
case for accurate simulations) using the standard linear finite
elements as well as the linear elements with reduced dispersion
(Section 3).

2. Numerical technique

The application of the space discretization to a system of partial
differential equations for transient acoustics or transient linear
elastodynamics leads to a system of ordinary differential equations
in time

M €U þ C _U þ K U ¼ R; ð1Þ

where M;C;K are the mass, damping, and stiffness matrices,
respectively, U is the vector of the nodal displacement, R is the vec-
tor of the nodal load. Zero viscosity, C ¼ 0, is considered in the
paper. Eq. (1) has the same form for homogeneous materials as well
as for inhomogeneous materials including composites with a piece-
wise constant variation of material properties and functionally
graded materials with a continuous variation of material properties.

Due to the space discretization, the exact solution to Eq. (1) con-
tains the numerical dispersion error; e.g., see [15,19,22–27] and
many others. Therefore, even the exact time integration of Eq. (1)
may lead to inaccurate results due to the space-discretization
error. This can be seen for the problems with impact loadings for
which large spurious oscillations may appear even for fine meshes
in space; e.g., see [14–20]. In our papers for homogeneous materi-
als [14–20] we have suggested several numerical techniques for
the reduction of the numerical dispersion error of linear finite ele-
ments as well as for the accurate time integration of Eq. (1) with-
out spurious oscillations under high-frequency and impact
loadings. In this paper we will extend these techniques for wave
propagation in inhomogeneous materials including composites
and functionally graded materials.

In the 1-D case, we will use the standard approach with linear
2-node finite elements for which the local consistent mass matrix
Mcons

m and the stiffness matrix Km for the mth finite element used in
Eq. (1) are given as (m ¼ 1;2;3; . . . ;n where n is the total number of
finite elements):
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where N and B are the standard finite element shape and B
matrices; A is the cross sectional area in the 1-D case; dxm is the
length of the mth finite element. The local lumped mass matrix D
can be obtained from the consistent mass matrix in Eq. (2) by the
‘‘row summation’’ technique. Along with the standard finite ele-
ment formulations with the consistent and lumped mass matrices,
we will use the finite element formulation with reduced dispersion
based of a weighted average of the consistent Me and lumped D
mass matrices with the weighting factor c (similar to that used in
[15,19,25,26])

MðcÞ ¼ DcþMconsð1� cÞ: ð4Þ

This approach with reduced dispersion will be used below in the
1-D and 2-D cases (see Section 2.2). It is known that for
homogeneous materials and uniform meshes, the weighting factor
c ¼ 0:5 decreases the numerical dispersion error from the second
order to the fourth order; see [15,19,25,26]. The value c ¼ 0:5 will
be also used below in the numerical examples for inhomogeneous
materials and non-uniform meshes. The global mass and stiffness
matrices in Eq. (1) can be calculated by the standard summation
of the corresponding local matrices. In Eqs. (2) and (3) we use the
local Cartesian system with the origin at the left node. The differ-
ence between the finite element formulations for homogeneous
and inhomogeneous materials consists in the fact that density q
and Young’s modulus E in Eqs. (2) and (3) are constant for homoge-
neous materials and are functions of the space coordinate (the local
coordinate s) for inhomogeneous materials. Therefore, in order to
increase the accuracy of the results, some approaches were based
on a variable density and Young’s modulus within a finite element
where these quantities in Eqs. (2) and (3) were approximated with
the help of the standard finite element shape functions; e.g., see
[4,6,10,12]. However, numerical results showed that these modifi-
cations do not significantly change the accuracy of numerical
results compared with a piecewise constant variation of density
and Young’s modulus within the domain and the constant values
of these parameters (calculated in the center of a finite element)
within a finite element; see [4]. In our paper we will use the second
possibility with a piecewise constant variation of density and
Young’s modulus. This will allow us to extend some results for
homogeneous materials to inhomogeneous materials (without the
modifications of existing computer codes) and to obtain accurate
numerical solutions for wave propagation in composite and
functionally graded materials; see below.

2.1. Two-stage time-integration technique and its extension to
composite and functionally graded materials

The numerical solutions of wave propagation problems under
high-frequency and impact loading include spurious high-fre-
quency oscillations due to the large numerical dispersion error
for high frequencies. In order to filter the spurious high-frequency
oscillations, numerical dissipation (or artificial viscosity) is usually
introduced for the time integration of Eq. (1). As we showed in our
paper [14], the use of a time-integration method with numerical
dissipation (or artificial viscosity) at each time increment leads
to inaccurate numerical results for low frequencies as well, espe-
cially for a long-term integration. It is also unclear in this case
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