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a b s t r a c t

A new three-dimensional theory to be applied to thick anisotropic plates is developed, according to which
the 3D governing equations of elasticity are successfully reduced to the simultaneous solution of two
uncoupled equations in the two-dimensional space. With the new theory an analytical solution for the
three-dimensional stress fields in anisotropic composite plates with V-notches is presented and its
degree of accuracy is discussed comparing theoretical results and numerical data from 3D FE analyses.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The knowledge of the stress fields near the tip of defects like
cracks, inclusions or sharp notches is essential in the design of
mechanical components. Even if in the past and recent literature
many efforts have been devoted to study notch stress distributions
in isotropic media, the stress analysis of anisotropic plates is
important as well, being them interesting for many engineering
applications such as composites, crystals, wood and reinforced
polymers.

Independently of the far applied loads, the stress state close to a
geometrical variation, such as a hole or a notch, is inherently mul-
tiaxial; under such a stress state the fatigue behaviour of compos-
ite materials might be very complex as highlighted by a number of
publications [1–7]. It is also worth mentioning, the accurate
knowledge of local stress fields is essential for formulating
strength assessment rules of structural components, engineering
strength criteria being almost based on quantities which can be
directly linked to the stress distributions [8,9].

The stress state close to a crack in a two-dimensional aniso-
tropic plate was analysed many years ago by Sih et al. [10], who
showed that the elastic stress and strain singularity remains 0.5,
as for the isotropic case and pointed out that the near tip fields
can be written in terms of three real stress intensity factors. Differ-
ent from the crack case, the anisotropic singularity degree of re-
entrant corners depends both on the notch opening angle, 2a,
and on the material elastic properties [11–18].

Recently, plane stress fields around square and rectangular
holes in symmetric laminates have been derived by Rao et al.
[19] using Savin’s basic solution for anisotropic plates and general-
ised hole mapping functions, while Ukadgaonker and Kakhandki
[20] carried out an analytical study of the stress distributions in
an orthotropic plate with an irregular shaped hole and different
in-plane loading conditions.

All the above mentioned works dealt with a two-dimensional
analysis of the problem, whilst only few works have considered
the importance of the three-dimensional nature of the stress fields
in cracked or notched composite plates.

Among these, Choi and Folias [21] studied the three-
dimensional stress fields in a laminated composite plate weakened
by a hole and subjected to a uniform displacement along the hor-
izontal direction.

By adopting the Kane and Mindlin’s assumption, Kotousov and
Wang developed a generalised plane-strain theory for transversely
isotropic composite plates and determined closed form solutions
for the three-dimensional stresses, especially the through-the-
thickness component, around a circular hole and a circular inclu-
sion in thick plates [22,23].

A FE investigation on the three-dimensional nature of stress
fields near the tip region of a cracked orthotropic plate has been
carried out by Prabhu and Lambros [24], who also discussed the
relative extent of regions of three-dimensional to two-dimensional
deformation in the cracked plate.

An eigenfunction expansion technique was used by Chaudhuri
[25] to derive the three-dimensional asymptotic stress field in the
vicinity of the front of a semi-infinite through-the-thickness crack
weakening an infinite transversely isotropic unidirectional fibre
reinforced composite plate. The same approach was later extended
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by Chaudhuri and Yoon [26,27] to study three-dimensional asymp-
totic displacement and stress fields in three-material plates.

In this paper we address the problem of the three-dimensional
stress fields near pointed V-notches in anisotropic plates of finite
thickness. By assuming separation of variables for the displace-
ment functions of the three-dimensional problem, the 3D govern-
ing equations of anisotropic elasticity are reduced to two
uncoupled differential equations; one is related to the solution of
the corresponding plane strain notch problem, the other one,
instead, provides the solution of the corresponding out-of-plane
shear notch problem.

The explicit formulae for the in-plane and the out-of-plane
shear stress fields at the vertex of sharp V-notches in anisotropic
plates are later derived and given in closed form as a function of
generalised stress intensity factors. The accuracy of the analytical
expressions is checked versus a number of finite element analyses
carried out on thick composite plates with rectangular cutouts or
pointed V notches, documenting a very satisfactory agreement.

2. The three-dimensional anisotropic elasticity problem

In this work a rectilinear anisotropic material is considered,
according to which the in-plane and the antiplane problems are,
by the material point of view, uncoupled. Conventional fibre-rein-
forced polymer composites respect this hypothesis. Under this cir-
cumstance, stress–strain relationship can be written as:
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Consider now a pointed V-notch in a thick plate, with a Cartesian
coordinate system centred at the notch tip (see Fig. 1), and suppose
that displacement distributions close to the apex can be written,
through separation of variables, in the following form:

ux ¼ f ðzÞ � uðx; yÞ uy ¼ f ðzÞ � vðx; yÞ uz ¼ gðzÞ �wðx; yÞ ð2Þ

where f(z) and gðzÞ can be regarded as generic polynomial functions
of arbitrary order. This represents a refinement of the proposal in
Refs. [28–30].

Thanks to Eq. (2), strain components result:
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Eq. (3) can be further simplified by noting that, due to the geomet-
rical singularity at the V-notch vertex, singular strains are expected
when approaching the notch tip (as r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
tends toward

zero). Displacement functions u;v and w must be finite, instead.
Accordingly:
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ð4Þ

and ezz can be regarded as negligible, so that a plane strain condition
is approximately present at the notch tip:

rzz ffi �
S13rxx þ S23ryy þ S36sxy

S33

ffi f ðzÞ C13
@u
@x
þ C23

@v
@y
þ C36

@u
@y
þ C36

@v
@x

� �
ð5Þ

Moreover, Eqs. (3)–(5) guarantee stresses to be in the form:

rxx ¼ f ðzÞ � ~rxxðx; yÞ

ryy ¼ f ðzÞ � ~ryyðx; yÞ

rzz ¼ f ðzÞ � ~rzzðx; yÞ

rxy ¼ f ðzÞ � ~sxyðx; yÞ

ð6Þ
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where Cij are stiffness coefficients. Consider the following equilib-
rium equation in the z direction:
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and substitute Eqs. (5) and (7):
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In this last equation the terms proportional to u and v can be
neglected when compared to @w

@x and to @w
@y , so that, finally:

C55
@2w
@x2 þ 2C45

@2w
@x@y

þ C44
@2w
@y2 ¼ 0 ð10Þ

Consider now equilibrium equations in the x- and in the y- direc-
tions. Thanks to Eqs. (6) and (7) we have:
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Differentiating the first equation by x and the second one by y and
making summation, using the Schwarz theorem for partial deriva-
tives and considering also Eq. (10), the result is:
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It is worth noting that Eq. (13) is inherently satisfied introducing
the Airy (bi-dimensional) stress function /ðx; yÞ such that:Fig. 1. Coordinates at a three dimensional V-notch tip.
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