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a b s t r a c t

This paper presents an improved numerical strategy for the broadband analysis of wave propagation in
composite or complex cross-sectional waveguides using the wave finite element method (WFE). Numer-
ical analysis of such structures require highly discretized finite element models and leads to extensive
computations. The proposed formulation relies on a projection of the cross-sectional transfer matrices
on a reduced set of shape functions associated to propagating waves. Dispersion curves are then
predicted only using a reduced number of eigenvectors. The performances and stability of this method
are evaluated using the wavenumbers and wave shapes. Validations are provided for a sandwich compos-
ite beam and a cylindrical elasto-acoustic waveguide.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in composite waveguides in a broadband
frequency range is widely investigated in automotive and aero-
space industry. A waveguide is a structure whose main dimensions
exhibit a periodicity or homogeneity in such a way that the prop-
agation of mechanical energy in the main direction (axis of a beam
or plane of a plate) is privileged. Waveguide hypothesis can signif-
icantly reduce the size of the problem, since the behavior of a
single sub-structure of the guide yields the response of the entire
structure. Dynamical behavior of such structures is determined
by evaluating the set of structural waves propagating through a
cross-section [1,2]. One of the major interests of guided waves is
their potential for travelling long distances at velocities governed
by the dispersion phenomena. The knowledge of these dispersion
properties for propagating waves is fundamental for an effective
use in engineering, for example in the field of structural health
monitoring (SHM).

Numerical prediction of these different waves and their disper-
sion curves has been extensively studied in last decades. The semi-
analytical finite element (SAFE) and wave and finite element (WFE)
methods are, among others, very efficient tools for this purpose. In
the SAFE method, sinusoidal functions are employed to formulate
the displacement field in the direction of propagation. Neverthe-

less, it is necessary to develop specific semi-analytical elements
for each application, which can severely limit its interest for indus-
trial purposes. In order to overcome these limitations, the WFE
method combines periodic structure theory (PST) introduced in
Mead [3] with a finite element method (FEM).

Therefore conventional finite element software packages can be
easily used to compute mass and stiffness matrices of the whole
structure. The one-dimensional WFE method was successfully ap-
plied to a wide range of waveguides as beams-like structures [4–6],
plates [7] and more complex geometries as thin-walled structures
[8], tyres [9], pipes [10] and curved layered shells [11].

As the application field of WFE method reaches structurally ad-
vanced composite structures, various numerical difficulties can ap-
pear, especially for one-dimensional formulation which involves
larger cross-sections. Poor-conditioning of the transfer matrix can
lead to numerical errors (see Zhong and Williams [12] for alterna-
tive formulations), aliasing effects and round-off errors can also
appear if cross-section length is not sized carefully. However, for
the determination of propagating waves in industrial waveguides
involving a large number of degrees of freedom, major obstacle re-
mains the large CPU time needed to solve the eigenproblem. Some
numerical issues were investigated for example by Waki et al. [13]
and a reduction strategy based on a contributing waves selection
was proposed by Mencik [14] to compute forced response of elastic
waveguides [15]. Mencik et al. proposed a substructuring tech-
nique to compute the appropriate wave motion in multi-layered
waveguides. Homogenisation techniques were also investigated
[16] to apply the WFE to laminated composites.
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Although the aforementioned reduction techniques are inter-
esting to compute forced responses using a reduced number of
wave modes, they do not reduce the numerical costs associated
with the computation of the wave basis. Therefore, these tech-
niques do not provide a general reduction strategy to compute
the propagating waves in elaborated waveguides. This paper pre-
sents a method, based on classical formulation of the periodic
structure theory, to calculate the dispersion curves of propagating
waves for complex cross-section or composite waveguides involv-
ing an important number of degrees of freedom. This alternative
formulation of WFE method relies on a frequency interpolation of
the transfer matrix eigenvectors through a subset of eigensolu-
tions. Thus, the propagating waves can be determined accurately
solving a smaller eigenproblem, enabling the application of the
WFE method to a wide range of sophisticated cross-sectional
waveguide configurations.

The paper is organized as follows. In Section 2, a brief overview
of the classical WFE formulation is shown. Section 3 describes the
proposed reduction strategy. The model order reduction is formu-
lated for the spectral problem and the strategy of wave interpola-
tion is described; the wave basis is defined next, using a reduced
set of propagating waves computed at the cut-on frequencies,
associated to the appearance of new propagating waves over the
frequency band; a method is then proposed to improve the basis
orthogonality and approximate eigenvectors between the cut-on
frequencies. Numerical examples are brought in Section 4. The first
application concerns a three-layered sandwich beam; both the
classical WFE formulation and an analytical low frequency solution
described in [17,18] are discussed, and the requirement for a
refined FEM of cross-section is highlighted; the reduction strategy
is then applied to a detailed FEM model. In the second example, the
reduced WFE formulation is extended to an elasto-acoustic
problem; dispersion curves are computed for a cavity filled with
fluid and compared to the analytical solution.

2. Overview of the WFE

2.1. Free wave propagation in 1D-waveguides

In this section, a formulation of the WFE method is given for
free wave propagation in a one-dimensional straight elastic and
dissipative waveguide. The structure can be assimilated to N iden-
tical subsystems of length d connected along the main direction x.
A unit cell of the waveguide is illustrated Fig. 1.

Displacements and forces are written as q and f, and subscripts
‘L’ and ‘R’ denote the left and right edges of a cell. Both edges have
the same number n of degrees of freedom. Mesh compatibility is
assumed between the N subsystems. The discrete dynamic equa-
tion of a cell at frequency x is given by:

ð�x2Mþ jxCþ KÞq ¼ f ð1Þ

where M;C;K are the mass, damping and stiffness matrices, respec-
tively. For periodic structures, condensation on the left and right

cross-sections of the inner DOF’s is required. Introducing the
condensed dynamic stiffness operator D ¼ �x2Mþ jxCþ K and
reordering degrees of freedom, equation can be stated as follows:
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where DLL and DRR are symmetric and Dt
LR ¼ DRL. Denoting k ¼ e�jjd

the propagation constant describing wave propagation over the cell
length d and j associated wavenumber, considering force equilib-
rium kfL þ fR ¼ 0 in a cell and invoking Bloch’s theorem [19],
qR ¼ kqL into Eq. (2) leads to the following quadratic spectral
problem [1]:
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where ððUqÞi; kiÞi¼1;...;2n stands for the wave modes of the waveguide.
The associated eigenvalue problem can be formulated by an appro-
priate state vector Uq ¼ ½ðUqÞt; ðUf Þt �

t
, leading to a symplectic trans-

fer matrix T.
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where eigenvectors represents both nodal displacements and forces
associated to a wave mode. The dynamical behavior of the global
system can be expressed by expanding amplitudes of incident and
reflected waves on a basis of eigenvectors. If the structure is
undamped, solutions are divided into propagative waves, whose
wavenumbers are real, and evanescent waves for which wavenum-
bers are imaginary. In dissipative case, complex wavenumbers are
associated to decaying waves.

2.2. Computational issues for a complex cross-section

In practice, direct computation of the eigenproblem Eq. (4) can
be prone to numerical errors when the meshed cross-section
involves a large number of degrees of freedom. Indeed, the transfer
matrix T requires to inverse matrix D�1

LR which can be poorly condi-
tioned. To limit this issue, various formulations of the eigenprob-
lem are available, for example:

�DRL �ðDLL þ DRRÞ
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However, numerical errors can become serious when eigenvalues
are either very large (ki) or very small (1=ki), see Zhong and
Williams [12] for a detailed discussion. When complex waveguides
are considered, an insufficient discretization of the cross-section
will produce significant errors, especially for eigensolutions associ-
ated to waves whose section shape have a short wavelength,
whereas refined meshes exhibit numerous evanescent solutions,
thus considerably increases computation time and worsen round-
off errors due to the truncation of inertia terms, see Waki [13].

Yet, structures considered in this paper require a high degree of
precision due to their geometry, their inner components or for high
order wave shapes calculation. In these situations computation
time grows exponentially with the number of nodes involved. Clas-
sical techniques based on modal basis reduction are not available,
since a cross-section boundary conditions are arbitrary for a uni-
form waveguide or subjected to structural periodicity otherwise.
Such an issue is addressed in the next section, introducing projec-
tion on a reduced set of shape functions.Fig. 1. Illustration of a waveguide and the state vector of a unit cell [1].
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