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a b s t r a c t

A three-dimensional pyroelectric analysis is performed for a multilayered piezoelectric hollow sphere
with interfacial bonding imperfections using the state-space method. The imperfect interface may not
only be mechanically compliant but also be weakly or highly conducting in thermal and electrical fields.
A generalized spring-layer model is adopted to describe the imperfect interface for mechanical deforma-
tion, while two kinds of models (i.e. lowly conduction and highly conduction) are exploited for the ther-
mal and electric fields. Upon establishing the state-space formulism for each layer, a special but direct
treatment of the interfacial conditions is made by introducing the so-called interfacial transfer matrix
to facilitate the global analysis. Numerical examples are presented to investigate the effect of bonding
conditions on the thermo-electro-mechanical behavior of a multi-layered sphere.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of smart materials and the associated
application technology, spherical shells made of piezoelectric
materials have been extensively used. Piezoelectric materials with
thermal effect are also known as pyroelectric materials. Pyroelec-
tric materials, usually having temperature-dependent material
properties, will produce deformations, stresses, and electric poten-
tial when subject to temperature variation. In particular, the effect
of thermal field on the behavior of piezoelectric structures has
drawn much attention from both engineers and scientists. Mindlin
[1] derived a set of two-dimensional theories for thermopiezoelec-
tric crystal plates vibrating at high frequencies. Nowacki [2] and
Ies�an [3] presented and discussed some general theorems of ther-
mopiezoelectricity. Chen and Shioya [4] investigated the piezo-
thermoelastic behavior of a pyroelectric spherical shell by
employing a displacement method. In the monograph of Carrera
et al. [5], a detailed description of the formulation for plates and
shells is presented. Due to their great advantages, pyroelectric
materials were also widely applied in laminated structures and
have been intensively investigated. Shang et al. [6] conducted a
thermal buckling analysis of a laminated piezoelectric plate under
uniform temperature change. Xu and Noor [7] studied the response
of a laminated cylindrical shell to mechanical loading, temperature

and electric potential change using the state-space approach. Re-
cently, many researchers have paid their attentions to laminates
with interfacial imperfection or damage. The damage may be
either caused in the process of fabrication or induced during the
service time. Among all weak interface models, the general spring
model is the most popular for its convenience. Using the general
spring model, Chen et al. [8–14] solved a wide range of static
and dynamic problems of piezoelectric beams, plates and cylindri-
cal shells. Brischetto et al. [15] presented a static analysis of mul-
tilayered piezoelectric plates by using the principle of virtual
displacements. Koutsawa et al. [16] developed a new type of hier-
archical FEM to study the static responses of piezoelectric beam
structures. But this kind of simplification of the interface is not
adequate to reflect all kinds of damages occurring at the interface,
especially for heat conduction and dielectricity. Making use of an
interface model different from the spring model, Benveniste [17]
studied the decay of end effects in heat conduction, considering a
sandwich strip with two kinds of imperfect interfaces, i.e. low or
high conductivity. Wang and Pan [18] derived exact solutions for
simply supported and multilayered piezothermoelastic plates with
imperfect interfaces under thermo-electro-mechanical loadings in
terms of the pseudo-Stroh formalism, with the imperfect interface
described as weakly (highly) thermal conducting, mechanically
compliant and weakly (or highly) diectrical conducting. However,
little effort has been made to investigate the imperfect laminated
sphere, especially for pyroelectric effect.
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In this paper, the state-space method is exploited to investigate
the three-dimensional pyroelectric responses of a multilayered pie-
zoelectric spherical shell with imperfect bonding. The imperfect
interface here is mechanically compliant and weakly (or highly)
thermal (or dielectrical) conducting. For a mechanically compliant
interface, we use the general spring model in which the continuous
interfacial tractions are linearly proportional to the displacement
jump [19]. Two kinds of interface model are adopted to describe
thermal and dielectrical conduction. One is a thermally (or dielec-
trically) weak interface, just like spring model, with the continuous
normal heat flux (or the normal electric displacement) proportional
to temperature (or electric potential) jump. The other one is a ther-
mally (or dielectrically) strong interface, for which the normal heat
flux (or the normal electric displacement) undergoes a discontinu-
ity which is proportional to the surface Laplacian of temperature (or
electric potential). For simplicity, the thermally weak interface will
be called LC-type (low conductivity), and the thermally strong
interface will be called HC-type (high conductivity) [17,18].

First, a second-order homogeneous state equation is established
based on the equations governing the heat conduction in the
spherical shell. It is solved by a successive use of series expansion
technique and matrix theory. A transfer relation is obtained be-
tween the thermal state vectors at the inner and outer surfaces
of the multilayered shell by using the interfacial transfer matrix
at each interface. The thermal field is then exactly determined by
incorporating the prescribed surface temperatures into the rela-
tion. Second, three displacement functions and two stress func-
tions are introduced to derive a second-order homogeneous and
a sixth-order inhomogeneous state equation for the electroelastic
field. Exact solutions are obtained via a solution procedure similar
to the thermal field. Numerical examples are finally considered and
discussed.

2. Basic equations

The basic equations of a spherically isotropic elastic body are
well described in the monograph of Ding and Chen [20]. Taking
the center of the spherical isotropy as the origin of the spherical
coordinates (r,h,/), we can rewrite the constitutive relations as
follows:

Rhh ¼ c11Shh þ c12S// þ c13Srr þ e31r2U� b1P;
R// ¼ c12Shh þ c11S// þ c13Srr þ e31r2U� b1P;
Rrr ¼ c13Shh þ c13S// þ c33Srr þ e33r2U� b3P;

Rrh ¼ 2c44Srh þ e15
@U
@h

;

Rr/ ¼ 2c44Sr/ þ
e15

sin h
@U
@/

;

Rh/ ¼ 2c66Sh/;

Dh ¼ 2e15Srh � e11
@U
@h

;

D/ ¼ 2e15Sr/ �
e11

sin h
@U
@/

;

Dr ¼ e31Shh þ e31S// þ e33Srr � e33r2Uþ g3P;

ð1Þ

where r2 = r@/@r, Rij are components of the stress tensor, U and Di

are the electric potential and electric displacement components,
respectively; P = rT with T denoting the temperature change refer-
ring to a stress- and electric displacement-free state; cij, eij, eij and g3

are the elastic, dielectric, piezoelectric and pyroelectric constants,
respectively and

b1 ¼ ðc11 þ c12Þa11 þ c13a33; b3 ¼ 2c13a11 þ c33a33 ð2Þ

where aii are the thermal expansion coefficients along the radial
direction and in the spherical surface. Sij in Eq. (1) is the generalized
strain tensor determined by

Srr ¼ rsrr ¼ r2ur ;

Shh ¼ rshh ¼
@uh

@h
þ ur;

S// ¼ rs// ¼
1

sin h
@u/

@/
þ ur þ uh cot h;

2Srh ¼ 2rsrh ¼
@ur

@h
þr2uh � uh;

2Sr/ ¼ 2sr/ ¼
1

sin h
@ur

@/
þr2u/ � u/;

2Sh/ ¼ 2sh/ ¼
1

sin h
@uh

@/
þ @u/

@h
� u/ cot h;

ð3Þ

where sij are the strain components, ui (i = r,h,/) are components of
the mechanical displacement. The equations of equilibrium are also
rewritten in the following form:

r2Rrh þ csc h
@Rh/

@/
þ @Rhh

@h
þ 2Rrh þ ðRhh � R//Þ cot h ¼ 0;

r2Rr/ þ csc h
@R//

@/
þ @Rh/

@h
þ 2Rr/ þ 2Rh/ cot h ¼ 0;

r2Rrr þ csc h
@Rr/

@/
þ @Rrh

@h
þ Rrr � Rhh � R// þ Rrh cot h ¼ 0:

ð4Þ

In the absence of free charge density, the charge equation of
electrostatics is

r2Dr þ Dr þ
1

sin h
@

@h
ðDh sin hÞ þ 1

sin h
@D/

@/
¼ 0 ð5Þ

The heat conduction equation is

r2Hr þHr þ
1

sin h
@

@h
ðHh sin hÞ þ 1

sin h
@H/

@/
¼ 0 ð6Þ

where Hi = rqi, qi are the components of heat flux. According to the
Fourier’s law, we have

Hh ¼ �c1
@T
@h
; H/ ¼ �

c1

sin h
@T
@/

; Hr ¼ �c3r2T ð7Þ

where ci are the heat conduction coefficients.

3. Determination of thermal field

Consider that a p-ply hollow sphere as shown in Fig. 1 is sub-
jected to given temperature changes at the two spherical surfaces.
The temperature field can be solved from Eqs. (6) and (7) and the
corresponding boundary/continuity conditions. In this section, we
will perform the analysis using the state-space method.

From Eqs. (6) and (7), it is easy to derive the following state
equation:

r2
Hr

T

� �
¼ �1 c1r2

1

�1=c3 0

" #
Hr

T

� �
ð8Þ

where Hr and T are the state variables for the temperature field, and
r2

1 ¼ @
2=@h2 þ cot h@=@hþ csc2h@2=@/2 is the two-dimensional
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Fig. 1. Spherical coordinates and the geometry of a spherical shell.
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