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Department of Structural Mechanics, Faculty of Civil Engineering, Architecture and Environmental Engineering, Technical University of Łódź, Al. Politechniki 6, 90-924 Łódź, Poland
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a b s t r a c t

The objective of this work is Gaussian uncertainty in material parameters of the rubber–carbon black
particle reinforced nano-composite in the framework of determination of its effective elastic parameters.
The analytical 3D micro-mechanical model is contrasted here with the Finite Element Method one real-
ized with the use of the system ABAQUS

�
and its tetrahedral finite elements C3D4. They discretize cubic

Representative Volume Element (RVE) with a centrally located spherical carbon black particle, whose
deformation energies accumulated during the uniaxial and biaxial uniform tension are computed. The
polynomial-based Response Function Method allows to determine analytical functions relating effective
elasticity tensor with Young moduli and Poisson ratios of this composite original components via the
Weighted Least Squares Method; this is done in the symbolic environment of MAPLE. These functions
serve for the initial sensitivity analysis, where we detect Poisson ratio of the rubber matrix as the crucial
design parameter and its Young modulus as having secondary importance, while particle Young modulus
and Poisson ratio are totally irrelevant. Next, the most influential parameters are randomized according
to the Gaussian distribution and are employed in the dual probabilistic scheme – by using the stochastic
perturbation and, independently, semi-analytical techniques to determine up to the fourth order
probabilistic characteristics of the effective tensor components. Deterministic and probabilistic
hypersensitivity of the effective constitutive tensor, expected according to the rubber matrix presence,
is confirmed in all computational experiments. Such a probabilistic energy-related FEM approach will
allow for future applications of more advanced constitutive models for the carbon black nano-composites,
for the RVEs of larger sizes – containing large agglomerations of these particles and for the imperfect
interfaces simulation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computational modeling and numerical solutions for solids and
structures at the incompressibility limits are of the special impor-
tance in the area of elastomers and rubber engineering and usually
bring some results qualitatively different from traditional
structural materials applications [1,2]. Since the rubber has Young
modulus thousand times smaller (E = 4.0 MPa) than the carbon
reinforcements (E = 10.0 GPa) as well as polymeric matrices and
Poisson ratio very close to 0.50, then even elastic behavior of the
rubber-based composites and their design sensitivity is not trivial
and may return some singularities. Homogenization analysis of the
latters using both analytical expressions and numerical techniques
is not free from these effects, especially in the context of an uncer-
tainty in these elastic characteristics. Randomness in the

nano-scale looks even more natural than in the macro, meso or
micro-scales [3] according to the uncertain distribution of the
particles, some dislocations of the molecules, their interactions
and interphases formed in some specific temperatures. This
randomness has been studied before in case of some effective
constitutive analytical equations for the elastomers [4] as well as
using computational Stochastic Finite Element Method (SFEM)
approach [5] for the polymer-based matrix enriched with the
rubber filling spherical particles.

Of course, the history of homogenization method is very long
right now and obeys the works concerned on algebraic equations
for the effective constitutive relations and their bounds [6,7], some
asymptotic solutions in terms of micro-macro transition [8,9] with
both lower and higher order [10] geometrical expansions. This area
has been extensively developed by various probabilistic techniques
applied together with classical Finite Element Method (FEM). One
may recall an application of the Monte-Carlo strategy [11,12],
stochastic spectral techniques [13], stochastic perturbation
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method of different order and precision [14] or the semi-analytical
approach [15]; some probabilistic estimates of an algebraic struc-
ture are also known [16]. Furthermore, an implementation of the
Voronoi Cell Finite Element Method (VCFEM) serving for the RVEs
with multiple fibers or particles is available also [17] together with
deterministic homogenization of thermal stresses in specific
composites [18].

An application of the generalized stochastic perturbation tech-
nique [19] that allows for relatively large random fluctuations of
the given input random variable is explored in this work together
with some concurrent semi-analytical probabilistic technique. The
homogenization-based numerical analysis is conducted via calcu-
lation of a deformation energy during uniform extension of the
RVE [20]. It was undertaken to verify an effect of the Young moduli
uncertainty on the basic probabilistic characteristics of such a
material, where spherical particles have this modulus about thou-
sand times smaller than the surrounding polymeric matrix. Now,
very similar computational methodology is engaged for a homoge-
nization of the composite with carbon black particles [21] having
Young modulus more than thousand times larger than the rubber
matrix and, further, randomization procedure is applied to all
material characteristics of the constituents. The main benefit is in
probabilistic analysis of the homogenization procedure when one
of the components approaches to the compressibility physical lim-
it. It is interesting indeed how Gaussian randomness in the Poisson
ratio of the rubber affects probabilistic characteristics of the effec-
tive tensor for various levels of an input coefficient of variation.
Computational procedure is provided with the system ABAQUS,
where the FEM test are all carried out and, further, with the use
of the symbolic environment MAPLE, where the Weighted Least
Squares Method (WLSM) approximation [22] and probabilistic cal-
culus are done both. A deterministic comparison with analytical
bounds available in the literature [6] shows a perfect agreement
of these methods, while probabilistic moments of the homoge-
nized tensor during randomization of the rubber Poisson ratio
shows probabilistic analysis from totally different perspective.

2. Randomized homogenization method

Let us consider a bounded continuum X �R3 with no initial
stresses and strains (cf. Fig. 1 including also its further computa-
tional FEM discretization) consisting of two disjoint elastic constit-
uents. The elastic characteristics of X = Xm [Xp are treated as
design random parameters and they result in random displace-
ment field ui(x; x) and random stress tensor rij(x; x) satisfying a
linear elasticity elliptic boundary value problem. The particle
volume Xp is uniquely defined with its deterministic radius,
while the matrix Xm surrounds it in the RVE with a perfect inter-
face. Let us assume that there are non-empty subsets of external
boundaries of the domain X (with the dimensions 2l1 � 2l2 � 2l3),
namely o Xr and o Xu, where the additional boundary conditions
are defined.

Contrary to the deterministic case study, now we solve the
entire set of the boundary value problems with the same boundary
conditions and with additionally modified given input random
parameter b � bðaÞ; a ¼ 1; . . . ;n. The set of solutions to the bound-
ary differential equation systems describing static equilibrium
around the mean value of this parameter indexed by a is
determined.

rðaÞij ðxÞ ¼ CðaÞijklðxÞe
ðaÞ
kl ðxÞ; ð1Þ
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1
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The corresponding variational formulations indexed also by a
are introduced to get the amount of strain energy stored in the
RVE and this is done via application of the Finite Element Method.
It yields [20]Z
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where the left hand side (LHS) of Eq. (6) corresponds to the elastic
energy of this structure and its right hand side (RHS) is equivalent
to the stress boundary conditions applied. A determination of the
effective tensor uses the strain energy of the heterogeneous med-
ium, i.e.
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The homogenized medium accumulates the same amount of elastic
energy having effective elastic characteristics series Cðeff ÞðaÞ

ijkl . A com-
parison of these two energies leads to
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where ehðaÞ
ij denotes the strain tensor associated with the homoge-

nized equivalent medium. This relation may serve directly for a cal-
culation of the homogenized elastic characteristics if only the strain
tensor has unit value; we assume additionally that the geometrical
dimensions of this RVE are equal in all directions (that means
l1 = l2 = l3 = d) to focus numerical experiments on an influence of
the random fluctuations of material parameters of both components
by only. The boundary conditions are specified as

ex1
ij :u1ðd; x2; x3Þ ¼ D1; u2ðx1; d; x3Þ ¼ 0; u3ðx1; x2; dÞ ¼ 0;

u1ð�d; x2; x3Þ ¼ �D1; u2ðx1;�d; x3Þ ¼ 0; u3ðx1; x2;�dÞ ¼ 0;

ð9Þ

as well as

ex2
ij : u1ðd; x2; x3Þ ¼ 0; u2ðx1; d; x3Þ ¼ D2; u3ðx1; x2; dÞ ¼ 0;

u1ð�d; x2; x3Þ ¼ 0; u2ðx1;�d; x3Þ ¼ �D2; u3ðx1; x2;�dÞ ¼ 0:
ð10Þ

due to the symmetry of the problem. One writes after the strain ten-
sor definition

ex1
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d
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d
: ð11Þ

Therefore, we obtain the following system of linear algebraic
equations describing effective characteristics as linear functions
of the deformation energies of the RVE under uniform strains:
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where the last RHS equals to

UðaÞ12 ¼ UðaÞ1 þ UðaÞ2 þ
1
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in case of any combination of the boundary conditions imposed.
Numerical solution to Eq. (6) proceeds after spatial discretization
of the displacements fields series typical for the FEM using classical
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