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a b s t r a c t

A size-dependent model for bi-layered Kirchhoff micro-plate is developed based on the strain gradient
elasticity theory. The governing equations and boundary conditions are derived by using the variational
principle. To illustrate the new model, the bending problem of a simply supported bi-layered square
micro-plate subjected to constant distributed load is solved. Numerical results reveal that the deflection
and axial stress decrease remarkably compared with the classical plate results, and the zero-strain
surface deviates significantly from the conventional position, when the thickness of plate is comparable
to the material length scale parameters. The size effects, however, are almost diminishing as the thick-
ness of plate is far greater than the material length scale parameters. In addition, the bi-layered plate
can be simplified to the monolayer plate as the thickness of one layer is becoming much greater than that
of the other layer.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

MEMS (Micro-Electro-Mechanical-System) has been widely
used as resonators, biosensors and actuators for its small size,
intelligence, conveniently controlling in the field of aerospace,
electronics, machinery, medical instruments, civil engineering
and so on [1–4]. MEMS devices, according to the geometry and
loaded forms, can be simplified to some typical micro-components,
such as micro-beam or micro-plate. Since the thicknesses of micro-
components are on the order of micron or sub-micro, their
mechanical properties are very different from those of macroscopic
devices. The mechanical behaviors in micro-structures exhibit
obvious size effect, which has been experimentally observed in
both metals and polymers [5–7]. The size-dependent behavior
cannot be explained by the conventional strain-based theories
due to the absence of the internal material length scale parameters.
The strain gradient theories have been developed to explain the
size dependence of the deformation behavior, in which the mate-
rial length scale parameters are incorporated into constitutive
relations.

According to the deformation metrics used, the strain gradient
theories can be classified into couple stress theories and general
strain gradient theories. The classical couple stress theory, which
uses the higher-order rotation gradients as the deformation
metrics, was presented by Mindlin and Tiersten [8] and Toupin
[9]. This theory includes two higher-order material constants in
addition to the conventional Lame constants. Yang et al. [10], intro-
ducing a higher-order equilibrium condition, developed the modi-
fied couple stress theory with only one higher-order material
parameter. The general strain gradient elasticity theory including
five higher-order material constants was firstly proposed by Mind-
lin [11], in which only the second-order deformation gradients
(first-order strain gradients) are included as additional deforma-
tion metrics. Also, by using a new set of higher-order metrics
and applying the higher-order equilibrium condition, Lam et al.
[5] modified the general strain gradient theory and reduced the
number of independent higher-order material parameters from
five to three. In addition, the simple model with only one
additional material constant in the strain gradient elasticity was
proposed by Aifantis [12].

In order to explain the size effects in micro-structures, various
strain gradient elasticity theories have been used by researchers
to develop strain gradient beam and plate theories. For example,
the classical couple stress theory has been employed by Anthoine
[13] to establish the bending model of a circular cylinder. Park
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and Gao [14] proposed a Bernoulli–Euler beam model based on the
modified couple stress theory. The strain gradient elasticity theory
has been used by Kong et al. [15] to construct the formulation of a
Bernoulli–Euler beam model. By employing the same strain gradi-
ent theory, Wang et al. [16] developed a Timoshenko beam model
to analyze its static bending and free vibration. For micro-plate, a
size-dependent model for the static analysis of Kirchhoff plate with
arbitrary shape was presented by Tsiatas [17] based on the modi-
fied couple stress theory. Ke et al. [18] and Jomehzadeh et al. [19]
employed the same couple stress theory to study the free vibra-
tions of Mindlin micro-plate and Kirchhoff micro-plate, respec-
tively. Based on the strain gradient elasticity theory, a Kirchhoff
plate model was developed by Ashoori Movassagh and Mahmoodi
[20] and Wang et al. [21].

All above researches are aimed at monolayer micro-compo-
nents. However, the micro-components are usually bilayered or
multilayered structures due to their special micro-machining tech-
nology, such as physical and electrochemical depositions [22–24].
Hence, it is essential to develop similar size-dependent models
highlighting the laminated micro-components. Zhang et al. [25]
studied elastic bending problems of bi-layered micro-cantilever
beams subjected to a transverse concentrated load based on the
Aifantis’ strain gradient elasticity theory. A size-dependent
bi-layered microbeam model was developed by Li et al. [26]
employing the strain gradient elasticity theory. Researchers further
extended the isotropic modified couple stress theory to anisotropic
modified couple stress theory and employed this theory to analyze
the bending and free vibration of composite laminated beam and
plate. Khandan et al. [27] reviewed the development of composite
laminated plate theories from very basic classical laminated plate
theory to more complicated and higher-order shear deformation
theory. The first order shear deformation theory with constant
transverse shear stress was proposed by Mindlin [28] and Reissner
[29]. Reddy [30] presented a third-order shear deformation theory
accounting for parabolic distribution of the transverse shear strains
through the thickness of the plate. A model of composite laminated
beam based on the global–local theory for new modified couple
stress theory was developed by Chen and Si [31]. Roque et al.
[32] used the modified couple stress theory to study the bending
of simply supported laminated composite Timoshenko beams sub-
jected to transverse loads. The models for composite laminated
Reddy beam [33] and plate [34] were developed by Chen et al.
employing the modified couple stress theory, respectively. More-
over, for functionally graded beam and plate, Asghari et al. [35],
Akgoz and Civalek [36], Reddy and Berry [37], Sahmani and Ansari
[38] investigated the static bending and free vibration of FGM
micro-beams and micro-plates based on the modified couple stress
theory.

In this paper, the bi-layered micro-plate model is developed
based on the strain gradient elasticity theory proposed by Lam.
The governing equations and boundary conditions are derived by

using the variational principle. To illustrate the new model, a
boundary value problem of simply supported bi-layered micro-
plate is solved. The influences of thicknesses of two layers on the
deflection are analyzed. The size effects on deflection, axial stress
and location of zero-strain surface are discussed.

2. Size-dependent bi-layered Kirchhoff micro-plate model

2.1. Strain gradient elasticity theory

Lam et al. [5] developed a strain gradient elasticity theory with
three independent material length scale parameters. In this theory,
the dilatation gradient tensor ci, the deviatoric stretch gradient
tensor gð1Þijk and the symmetric rotation gradient tensor vs

ij are intro-
duced except the classical strain tensor eij. These deformation mea-
sures are defined as

eij ¼
1
2
ð@iuj þ @juiÞ; ð1Þ

ci ¼ @iemm; ð2Þ

gð1Þijk ¼
1
3
ð@iejk þ @jeki þ @keijÞ �

1
15
½dijð@kemm þ 2@memkÞ

þ djkð@iemm þ 2@memiÞ þ dkið@ jemm þ 2@memjÞ�; ð3Þ

vs
ij ¼

1
2
ðeipq@peqj þ ejpq@peqiÞ; ð4Þ

where ui is the displacement vector, @i is the differential operator,
emm is the dilatation strain, dij is the Kronecker symbol and eijk is
the alternate symbol.

For the isotropic linear elastic material, the strain energy den-
sity w0 is given as

w0 ¼
1
2

keiiejj þ leijeij þ ll2
0cici þ ll2

1g
ð1Þ
ijk gð1Þijk þ ll22v

s
ijv

s
ij; ð5Þ

where k and l are the Lame constants, l0, l1 and l2 are the indepen-
dent material length scale parameters associated with the dilation
gradients, deviatoric stretch gradients and symmetric rotation gra-
dients, respectively.

2.2. Governing equation and boundary conditions

Consider a bi-layered rectangular elastic micro-plate subjected
to a static transverse load q(x,y) distributed in the x–y plane as
shown in Fig. 1. The length and width of the plate are a, b, and
the thicknesses of the lower and upper layers are h1 and h2, respec-
tively. The properties of materials are E(1), v(1), l0(1), l1(1), l2(1) and
E(2), v(2), l0(2), l1(2), l2(2), where E is the Young’s modulus, v is the
poisson’s ratio and subscripts 1 and 2 in brackets denote the lower
and upper layers, respectively. The position of neutral surface is
assumed to be deviated d from the interface between two layers.

For the Kirchhoff plate, where x0–y0 plane is coincident with the
neutral surface, the displacement components are taking as

Fig. 1. Schematic of a bilayered micro-plate with distributed load.
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