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a b s t r a c t

This paper investigates the size-dependent vibrational behavior of functionally graded (FG) rectangular
Mindlin microplates including geometrical nonlinearity. The FG Mindlin microplate is considered to be
made of a mixture of metal and ceramic according to a power law distribution. To this end, based on
the modified couple stress theory (MCST) and Hamilton’s principle, the governing equations of motion
and associated boundary conditions are derived. In the solution procedure, the set of nonlinear partial
differential equations is discretized through the generalized differential quadrature (GDQ) method. After-
wards, the numerical Galerkin scheme is employed to convert the discretized partial differential equa-
tions of motion to the Duffing-type ordinary differential equations. The periodic time differential
operators introduced based on the derivatives of a periodic base function are used to discretize differen-
tial equations on the time domain. Finally, the pseudo arc-length continuation method is utilized to
numerically solve the set of nonlinear algebraic parameterized equations. The effects of the important
parameters including material gradient index, length-to-thickness ratio, length scale parameter, and
boundary conditions on the vibrational characteristics of rectangular Mindlin microplate are thoroughly
discussed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Introduction of functionally graded (FG) materials to micro- and
nano-structures has profoundly facilitated achieving the most
desired micro- and nano-electromechanical systems (NEMS/
MEMS). The FG micro- and nanosystems can be applied in different
fields [1–5].

Dealing with the mechanical behavior of small-scale materials,
neglecting the size-dependency might lead to producing inefficient
MEMS or MEMS. Since the classical continuum mechanics is inca-
pable of considering the size effect, several attempts have been
made to develop different size-dependent elasticity theories. In
this regard, one can mention: couple stress elasticity, nonlocal
elasticity, surface stress elasticity and the strain gradient elasticity
[6–11]. These theories and their modified forms have been fre-
quently employed in studying small-scale structures [12–17].
Mindlin and Tiersten [6] and Toupin [18] proposed the classical
couple stress theory which includes two classical and two addi-
tional material constants for isotropic elastic materials. After that,

Yang et al. [19] represented the modified form of the couple stress
theory (MCST). They considered the size effect using only one addi-
tional material length scale parameter besides two classical mate-
rial constants.

MCST has been successfully employed in studying the size-
dependent mechanical behavior of microstructures, especially
microplates. In this direction, employing MCST, the size-dependent
static and dynamic responses of Kirchhoff microplates were inves-
tigated in several papers [20–22]. Asghari [23] derived the govern-
ing equations of motion and boundary conditions for the
geometrically nonlinear microplates with arbitrary shapes based
on the MCST. Based on the Mindlin plate theory and MCST, Ke
et al. [24] developed a size-dependent microplate model to inves-
tigate the free vibration behavior of microplates. Chen et al. [25]
developed the Reddy microplate model for the bending analysis
of composite laminated microplates. In particular, Ma et al. [26]
developed the Mindlin microplate model, which was employed
to examine the free vibration of microplates. It was observed that
the natural frequency predicted by the size-dependent microplate
model is higher than that predicted by the classical model, espe-
cially for thin plates. Wang et al. [27] proposed a non-classical
mathematical model and an algorithm for the axisymmetrically
nonlinear free vibration analysis of a circular microplate.
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Recently, MCST has been further developed to accommodate
to size-dependent non-homogeneous microbeams and microplate
models as well. The static and dynamic behavior of FGM Euler–
Bernoulli and Timoshenko microbeams were studied by Asghari
et al. [28,29], Reddy [30], Salamat-talab et al. [31], and Nateghi
[32]. Reddy and Kim [33] developed a general nonlinear size-
dependent third-order plate theory including geometric nonlin-
earity, and a gradient of the material properties. Reddy and Berry
[34], based on MCST, power-law variation of the material, tem-
perature-dependent properties, and the von Kármán geometric
nonlinearity presented a microstructure-dependent nonlinear
theory for the axisymmetric bending of circular microplates. Ke
et al. [35] developed a non-classical microplate model and stud-
ied the free vibration behavior of annular FG microplates based
on MCST, Mindlin plate theory and von Kármán geometric
nonlinearity.

According to the literature, investigations regarding to the
mechanical behavior of FG microplates are not well-developed
and need further attention. Current paper is aimed to study the
size-dependent free vibration behavior of FG rectangular Mindlin
microplates including geometrical nonlinearity. The FG microplate
is made of a mixture of metals and ceramics; a power law function
is used to express the volume fraction of components. The MCST,
Mindlin plate theory and the Hamilton’s principle are employed
to derive the governing equations of motion and associated bound-
ary conditions. The set of nonlinear partial differential equations
are discretized by the GDQ method and then a numerical Galerkin
procedure is used with the aim of reducing the governing partial
differential equations into a set of ordinary differential equations
of Duffing-type. Since the vibration response of the microplate is
periodic type, by using derivatives of a periodic base function, a
set of periodic time differential matrix operators is introduced to
discretize the Duffing equations on time domain. Finally, the
pseudo arc-length continuation method is employed to find the
large amplitude vibration response of the FG microplates. The
effects of the material gradient index, length-to-thickness ratio,
length scale parameter, and boundary conditions on the free vibra-
tion behavior of rectangular microplate are investigated.

2. Governing equations of size-dependent microplate

According to MCST, the strain energy of a continuum elastic
medium occupying region V is defined by a function of strain ten-
sor and gradient of the rotation vector as

Um ¼
1
2

Z
V
ðr : eþm : vÞdV ; ð1Þ

where r,e and v are the Cauchy stress, Green strain and symmetric
rotation gradient tensors, and m denotes the deviatoric part of cou-
ple stress tensor which for a linear isotropic elastic material can be
defined as

e ¼ 1
2
ðruþ ðruÞTÞ; eij ¼

1
2
ðui;j þ uj;iÞ; ð2aÞ

v ¼ 1
2
ðrhþ ðrhÞTÞ; vs

ij ¼
1
2
ðhi;j þ hj;iÞ; hi ¼

1
2
ðcurlðuÞÞi; ð2bÞ

r ¼ ktrðeÞIþ 2le; m ¼ 2ll2v; ð2cÞ

where u and h are the displacement and rotation vectors; k and l
are Lame’s constants defined as k ¼ Em

ð1þmÞð1�2mÞ and l ¼ E
2ð1þmÞ; in which

m and E are Poisson’s ratio and Young’s modulus, respectively; and, l
denotes a material length scale parameter, indicating the effect of
couple stress.

A schematic of an FG Mindlin microplate with the length a,
width b and thickness h, defined in the rectangular coordinate
system (0 6 x 6 a, 0 6 y 6 b, � h/2 6 z 6 h/2) is illustrated in

Fig. 1. The FG microplate is considered to be made of a mixture
of ceramic and metal. Also, the bottom surface (z = �h/2) and top
surface (z = h/2) of the microplate are metal-rich and ceramic-rich,
respectively. Effective Young’s modulus E, Poisson’s ratio m and
density q of FG microplate can be calculated by

EðzÞ ¼ EcVc þ EmVm; mðzÞ ¼ mcVc þ mmVm;

qðzÞ ¼ qcVc þ qmVm; ð3Þ

where the subscripts m and c signal the metal and ceramic phases,
respectively; V stands for the volume fraction of the phase materials
determined via the power law function as [36]

VcðzÞ ¼
1
2
þ z

h

� �k

; VmðzÞ ¼ 1� 1
2
þ z

h

� �k

ð4Þ

where k denotes the volume fraction exponent.
Based on the first-order shear deformation plate theory, the in-

plane displacements can be stated as linear functions of the plate
thickness and the transverse deflection is considered unchanged
through the plate thickness; with regards to this theory, the dis-
placement field in a Mindlin microplate can be described as

ux¼uðt;x;yÞ�zwxðt;x;yÞ; uy¼vðt;x;yÞ�zwyðt;x;yÞ; uz¼wðt;x;yÞ;
ð5Þ

in which u(t,x,y) and v(t,x,y) are mid-plane displacements, w(t,x,y) is
the lateral deflection of the microplate and (wx,wy) denote the rota-
tions of the transverse normal about y- and x- axis, respectively.
Also, t is the time. Inserting Eq. (5) into (2a) gives the nonzero com-
ponents of the strain–displacement relations as follows:

exx ¼ /0 � z/1; eyy ¼ u0 � zu1; exy ¼ eyx ¼
1
2
ðj0 � zj1Þ;

exz ¼ ezx ¼
1
2
c1; eyz ¼ ezy ¼

1
2
c2;

ð6Þ

where
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ð7Þ

Using Eqs. (5), (6) and (2) leads to the nonzero components of h and
v as

hx ¼ x0
x ; hy ¼ �x0

y ; hz ¼ x0
z � zx1

z ; ð8Þ

where

Fig. 1. Schematic of a microplate: kinematic parameters, coordinate system,
geometry and loading.
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