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a b s t r a c t

Strain gradients can induce polarization even in centrosymmetric materials. A size-dependent model of a
three-layer microbeam including a flexoelectric dielectric layer is proposed based on the theory pre-
sented by Hadjesfandiari. The governing equations, initial conditions and boundary conditions are
derived by utilizing the Hamilton’s principle. Both the static bending and free vibration problems of can-
tilever and simply supported microbeams are solved. Numerical results reveal that for both cantilever
beam and simply supported beam, the absolute values of voltages induced in the piezoelectric process
and deflections generated in the inverse piezoelectric process decrease as the characteristic size
decreases and increase with the increase of flexoelectric coefficient. The first order natural frequency
increases negligibly as the flexoelectric coefficient increases while decreases significantly with the
increase of the characteristic size. The first order natural frequency shows obvious size effect, but the size
effect is almost diminishing as the thickness of the beam is far greater than the material length scale
parameter.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Microbeams, as sensors, resonators and actuators, have been
found widely applications in microelectromechanical system
(MEMS). By coupling the mechanical and electrical fields, piezo-
electric microbeams have attracted much attention in recent years
[1–5]. According to their designed functions and sensitivities, the
usual piezoelectric structures are unimorph and bimorph ones,
having one or two piezoelectric layers, respectively [6]. In general,
the piezoelectric microbeams are multi-layered structures includ-
ing substrate, electrodes, piezoelectric layers, even elastic layers
[7]. Up to now, many efforts have been devoted to the analysis of
electromechanical coupling in dielectric solids.

A piezoelectric multilayered cantilever model considering the
buffer layer and electrodes is established to evaluate the dynamic
performance of the piezoelectric actuator by Peng et al. [8] based
on the Bernoulli–Euler beam theory. Yang et al. [9] studies the
interfacial mechanical behavior of laminate beams which consist
of two piezoelectric facial sheets and an elastic core. The tip-
deflection of a piezoelectric bimorph cantilever is analyzed by
Huang et al. [10] in its static state. Moreover, for functionally

graded piezoelectric beam, the static, free vibration and dynamic
response are researched by Legy-Nazargah et al. [11] utilizing a
finite element model. Alibeigloo [12] presents an analytical solu-
tion for functionally graded beam integrated with piezoelectric
layers under an applied electric field and thermo-mechanical load.

All above works are based on the classical piezoelectric theory,
where the relation between electric polarization and strain is
described in non-centrosymmetric dielectrics. Although piezoelec-
tricity is inherent only in non-centrosymmetric materials, a piezo-
electric response can also be found in centrosymmetric materials
[13]. An inhomogeneous strain field or the presence of the strain
gradients can locally break inversion symmetry and may induce
polarization in centrosymmetric dielectrics [14–17]. The coupling
of strain gradient to polarization is expected to show a strong size
dependence, which is known as flexoelectric effect in some circles.
Fousek et al. [18] are the first to show fabrication of piezoelectric
composites using piezoelectric materials is not a necessary condi-
tion. Cross even has developed a piezoelectric composite contain-
ing no piezoelectric element [19]. The linear electromechanical
coupling in isotropic materials and size-effect phenomena in
piezoelectric solids have been reported in some experiments
[20–23]. Due to neglecting the microstructure, the classical piezo-
electric theory fails to capture the size dependence of piezoelectric
solids. Thus, the size-dependent piezoelectric theories have been
proposed to account for the size effect.
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The size-dependent piezoelectric theories are developed from
the strain gradient theories which achieve giant success in materi-
als without electromechanical coupling. According to the deforma-
tion metrics used, the strain gradient theories are classified into
couple stress theories and general strain gradient theories. The
couple stress theory [24–25] uses the rotation gradients as the
high-order deformation metrics and it includes two high-order
material constants. The general strain gradient theory [26] uses
the second-order deformation gradients (the first-order strain
gradients) as the high-order deformation metrics and it has five
higher-order material constants. The rotation gradients are the
skew-symmetric part of the second-order deformation gradients.
The general strain gradient theory, hence, can reduce to the couple
stress theory. In view of the practicability, the strain gradient
theories are simplified by introducing a higher-order equilibrium
condition. Through neglecting the skew-symmetric part of the
rotation gradients, Yang et al. [27] develop the modified couple
stress theory with only one high-order material constant and
Lam et al. [28] propose the modified strain gradient elasticity
theory including three high-order material constants. Recently,
by considering true continuum kinematical displacement and
rotation, Hajesfandiari and Dargush [29] demonstrate the couple
tensor is skew-symmetric. Thus, they present the consistent couple
stress theory by adopting the skew-symmetric part of the rotation
gradients as the curvature tensor.

From the strain gradient theories, the high-order theories con-
taining electromechanical coupling effect are developed. A piezo-
electric theory with rotation gradient effect is proposed by Wang
et al. [30] in the framework of the couple stress theory. Hu and
Shen [31] establish a theory concerning the strain/electric field
gradient with the surface and electrostatic force effect. However,
as stated previously, these theories suffer from its dependence on
inaccuracy enough strain gradient theories. Hadjesfandiari [32],
hence, develops a piezoelectric couple stress theory in which the
size-dependent piezoelectric effect is related to the skew-symmetric
part of the rotation gradient.

By applying the high-order piezoelectric theories, the size-
dependent electromechanical coupling effects are researched.
Liang and Shen [33] develop a size-dependent Bernoulli–Euler
beam model for the piezoelectric nanowires based on the theory
proposed by Hu and Shen. The first-order strain gradient effect in
micro piezoelectric bimorph is investigated by Hu et al. [34]. In
addition, the nonlinear vibration of the piezoelectric nanobeams
is analyzed by Ke et al. [35] based on the nonlocal theory and
Timoshenko beam theory.

This paper represents a further research of Hadjesfandiari’s
work that establishes a piezoelectric couple stress elasticity theory
predicting the size effect and electromechanical coupling effect
reported in some isotropic materials. A size-dependent three-layer
microbeam model containing substrate, flexoelectric layer and
electrode is developed. The governing equations, initial conditions
and boundary conditions are derived by using the Hamilton’s
principle. Two boundary value problems (one for cantilever beam
and another for simply supported beam) are assessed and the
size dependences of the electromechanical coupling effect are
discussed.

2. Size-dependent three-layer microbeam model including
electromechanical coupling

2.1. Size-dependent piezoelectricity

In order to account for the size effect phenomena of piezoelec-
tric solids and linear electromechanical coupling in isotropic mate-
rials, Hadjesfandiari [32] develops a consistent size-dependent

piezoelectric theory. This theory is based on the couple stress
theory, in which the skew-symmetrical part of the macroscopic
rotation gradient is treated as the measure deformation. The
electromechanical enthalpy is expressed as,

H ¼ 1
2

keiiejj þ leijeij þ 8ll2jiji �
1
2
eEiEi � 4fEiji; ð1Þ

where k and l are the Lame constants, l is the independent material
length scale parameter, e is the permittivity, f is the flexoelectric
coefficient, eij is the strain tensor, ji is the mean curvature vector,
and Ei is the electric field vector. These deformation measures are
defined as

eij ¼
1
2

ui;j þ uj;i
� �

; ð2Þ

ji ¼
1
4

uj;ij � ui;jj
� �

; ð3Þ

Ei ¼ �/;i; ð4Þ

in which ui is the displacement vector and u is the electric
potential.

2.2. Governing equations, initial conditions and boundary conditions

As shown in Fig. 1, an isotropic homogeneous flexoelectric
dielectric is bonded to an elastic substrate and an electrode is laid
on the top surface of flexoelectric layer. The width of microbeam is
b and the surface heights of three layers denote h1, h2 and h3,
respectively. The elastic three-layer microbeam is subjected to a
lateral load q(x, t) along its length L and a voltage V0 between the
upper and lower surfaces of the flexoelectric layer. A Cartesian
coordinate system is adopted in this model, where x-axis is estab-
lished at the subface of beam. For the Bernoulli–Euler beam, the
displacement components [36] can be taken as

u ¼ u0ðx; tÞ � z
@wðx; tÞ
@x

; v ¼ 0; w ¼ wðx; tÞ; ð5Þ

where u, v, w, are the x-, y-, z-components of the displacement
vector, u0 is the axial displacement on the x–y plane and t is time.
For a slender beam with a large aspect ratio, the electric field Ex

can be neglected and the only relevant electric component is Ez

[37,38]. Hence, the electric potential can be assumed to be

/ ¼ /ðz; tÞ: ð6Þ

From the displacement field and electric potential, the strain,
curvature and electric field components can be calculated by
substituting Eqs. (5) and (6)into geometric equations, Eqs. (2)–(4).
The non-zero components are written as

Fig. 1. Longitudinal section of a three-layer microbeam and its coordinate system.

A. Li et al. / Composite Structures 116 (2014) 120–127 121



Download English Version:

https://daneshyari.com/en/article/251639

Download Persian Version:

https://daneshyari.com/article/251639

Daneshyari.com

https://daneshyari.com/en/article/251639
https://daneshyari.com/article/251639
https://daneshyari.com

