

Journal of BIOTECHNOLOGY

Journal of Biotechnology 131 (2007) 205-208

www.elsevier.com/locate/jbiotec

Short communication

Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12

Harald J. Ruijssenaars ^{a,*}, Eric M.G.M. Sperling ^b, Peter H.G. Wiegerinck ^b, Ferry T.L. Brands ^b, Jan Wery ^{a,1}, Jan A.M. de Bont ^{a,2}

^a TNO Quality of Life, Julianalaan 67, 2628BC Delft, The Netherlands
^b NV Organon, Department of Process Chemistry, P.O. Box 20, 5340BH Oss, The Netherlands
Received 2 April 2007; accepted 12 June 2007

Abstract

A steroid 15β -hydroxylating whole-cell solvent tolerant biocatalyst was constructed by expressing the *Bacillus megaterium* steroid hydroxylase CYP106A2 in the solvent tolerant *Pseudomonas putida* S12. Testosterone hydroxylation was improved by a factor 16 by co-expressing Fer, a putative Fe-S protein from *Bacillus subtilis*. In addition, the specificity for 15β -hydroxylation was improved by mutating threonine residue 248 of CYP106A2 into valine. These new insights provide the basis for an optimized whole-cell steroid-hydroxylating biocatalyst that can be applied with an organic solvent phase.

© 2007 Elsevier B.V. All rights reserved.

Keywords: CYP106A2; Whole cell biocatalyst; Steroid synthesis; Solvent tolerance; Pseudomonas putida; Fer

Stereoselective hydroxylations of steroid precursors are important reactions in the synthesis of steroid drugs. Many wild-type microorganisms, often fungi, have been isolated that are capable of hydroxylating steroids at various positions (Mahato and Garai, 1997). However, the application of biocatalysts in steroid transformations is restricted by the extremely limited water-solubility of the substrates. Therefore, we aimed at constructing new whole-cell biocatalysts for steroid conversions, based on the solvent tolerant bacterium *Pseudomonas putida* S12 (for reviews: De Bont, 1998; Wery and De Bont, 2004). Whole-cell biocatalysts based on this host can be operated in the presence of a second phase of organic solvent (De Bont, 1998; Wierckx et al., 2005), which property can be exploited to alleviate the solubility problems normally encountered in steroid bioconversions.

To obtain a steroid hydroxylating biocatalyst, CYP106A2 of *Bacillus megaterium* ATCC 13368 was selected for expression

in *P. putida* S12. CYP106A2 (P450_{meg}) is a class I cytochrome P450 (cytP450) and one of the few known bacterial steroid hydroxylases. It hydroxylates 3-keto-4-*ene*-steroids at the 15 β -position and, to a lesser extent, at the 6 β -position (Berg et al., 1976) (Fig. 1). In the present study, testosterone was selected as the model substrate. The bacterial strains, plasmids and oligonucleotide primers used are listed in Tables 1 and 2.

The cyp106A2 gene (Rauschenbach et al., 1993) was obtained by PCR from genomic DNA of B. megaterium and cloned into expression vector pTn-1, yielding pTn_cyp106A2. P. putida S12 was electrotransformed with pTn_cyp106A2 and the testosterone hydroxylating capacity of the transformants was assessed. HPLC-DAD analysis of the expression culture supernatants demonstrated that three products were formed from testosterone (Fig. 2). The major product was identified by ¹H NMR as 15β-hydroxytestosterone. 6β-Hydroxytestosterone and androst-4-ene-3,17-dione (AD) were present as minor products. Typically, no further increase of hydroxylated testosterone derivatives was observed after 72 h. As expected, no hydroxylated testosterone derivatives were observed in cultures of P. putida S12[pTn-1] (empty vector control) or P. putida S12[pTn_cyp106A2] without salicylate (uninduced control). AD was also produced in the control cultures, confirming previous findings that the oxidation of testos-

^{*} Corresponding author.

E-mail address: harald.ruijssenaars@tno.nl (H.J. Ruijssenaars).

¹ Present address: Dyadic Nederland B.V., Utrechtseweg 48, 3704 HE Zeist, The Netherlands.

² Present address: Royal Nedalco, P.O. Box 6, 4600AA Bergen op Zoom, The Netherlands

Fig. 1. CYP106A2 catalyzed hydroxylation of testosterone.

Table 1 Strains, plasmids and oligonucleotides used in this study

Strain	Relevant characteristics	Source/reference
E. coli DH5α	General cloning host	Invitrogen
P. putida S12	Wild type	Hartmans et al. (1990)
P. putida DSM50198	CAM plasmid; camCAB source	DSMZ
Bacillus megaterium DSM2987	cyp106A2 source	DSMZ
Bacillus subtilis strain 168	ykuN, ykuP, fer source	DSMZ
Plasmid		
pTn-1	E. coli - P. putida shuttle vector; P_{nag} , Gm^R , Ap^R , pUCP22 backbone	Nijkamp et al. (2005)
pTn_cyp106A2	pTn-1 containing <i>cyp106A2</i>	This study
pTn_camCAB	pTn-1 containing camCAB	This study
pTn_cyp106A2camAB	pTn_camCAB; camC replaced by cyp106A2	This study
pTn_cyp106A2ykuN	pTn_cyp106A2camAB; camAB replaced by ykuN	This study
pTn_cyp106A2ykuP	pTn_cyp106A2camAB; camAB replaced by ykuP	This study
pTn_cyp106A2fer	pTn_cyp106A2camAB; camAB replaced by fer	This study
pTn_cyp106A2T248Vfer	pTn_cyp106A2fer; cyp106A2 replaced by cyp106A2T248V	This study

terone to AD is endogenous to *P. putida* S12 (unpublished data).

CytP450s usually act as the terminal oxidases in multicomponent electron transfer chains that receive reducing equivalents from NAD(P)H. The electron transfer chains associated with class I cytP450s consist of an FAD-containing reductase and an electron shuttle protein, ususally a 2Fe-2S protein of the adrenodoxin/putidaredoxin family (Hannemann et al., 2007). The observation that *E. coli* expressing CYP106A2 does not hydroxylate steroids implies that *E. coli* is devoid of such electron transfer proteins (Rauschenbach et al., 1993; Hannemann

et al., 2006). Although *P. putida* S12 did hydroxylate testosterone when expressing CYP106A2, the attained testosterone 15β-hydroxylation was rather modest: 0.7% of the substrate was hydroxylated after 72 h. Therefore, it was decided to construct a more efficient steroid hydroxylating whole-cell biocatalyst by co-expressing exogenous electron transfer proteins and CYP106A2 in *P. putida* S12.

Since no genetic information is available for the native *B. megaterium* CYP106A2 redox partners (megaredoxin and megaredoxin reductase (Berg, 1982)), the CYP101 supporting electron transfer chain from *P. putida* DSM50198 was selected,

Table 2 Oligonucleotides used in this study

Oligonucleotide primer	Target gene	Sequence $(5'-3')^a$	Cohesive end
Primer 1	cyp106A2	GCAT <u>GAATTC</u> ATGAAAGAAGTTATTGCAGTAAAAG	EcoRI
Primer 2	cyp106A2	GTCTGCGGCCGCTTACATGCGGCTTGCCTTAAGCG	NotI
Primer 3	cyp106A2	GC <u>TTAATTAA</u> TTACATGCGGCTTGCCTTAAGCG	PacI
Primer 4	camC	GCAT <u>GAATTC</u> ATGACGACTGAAACCATACAAAGC	EcoRI
Primer 5	camC	GC <u>TTAATTAA</u> ACCGCTTTGGTAGTCGCCGG	PacI
Primer 6	camA	GCTTAATTAAATGGGAGTGCGTGCTAAGTGAACG	PacI
Primer 7	camB	GCATGCGGCCGCTTACCATTGCCTATCGGGAACATCG	NotI
Primer 8	fer	GC <u>TTAATTAA</u> ATCTGGGAGGTTTTATTCATGGC	PacI
Primer 9	fer	GCATGCGGCCGCGATTGAGCAGCAGCGAAGTGC	NotI
Primer 10	ykuN	GCTTAATTAACAACTAATGGGGTGATAACATGGC	PacI
Primer 11	ykuN	GCATGCGGCCGCCGATGCCGTAACAGCGGTTGC	NotI
Primer 12	ykuP	GCTTAATTAAAGAGGAGGAACAAGGAAaTGGCGAAG	PacI
Primer 13	ykuP	GCATGCGGCCGCCCCAGTGAGTGATCAGACAGCG	NotI
Primer 14	cyp106A2	GGAGTCGAGACAGTCAGTCATTTATTGG	Mutagenic primer ACC > GTC
Primer 15	cyp106A2	CCAATAAATGACTGACTGTCTCGACTCC	Mutagenic primer GGT > GAC

^a The restriction sites used for cloning have been underlined.

Download English Version:

https://daneshyari.com/en/article/25164

Download Persian Version:

https://daneshyari.com/article/25164

<u>Daneshyari.com</u>