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a b s t r a c t

In the framework of the modeling of composite beam structures, the eXtended Variational Formulation
(XVF) is carried out to couple different kinematics. The purpose is to take advantages of efficient models
and reduce the overall computational cost without loss of local precision. In this way, the structure is
divided into non-overlapping domains with different kinematics. Local domains of interest are described
with advanced models, such as refined Sinus model, to precisely describe local behavior, while the
remaining global domain uses simple classical models. Each of the kinematics needs a suitable Finite
Element (FE) approximation, therefore the coupling of different FE approximations is also addressed.
The present approach is assessed on homogeneous and sandwich structures. It is compared with classical
Multiple Point Constraints vias penalty. The study has shown the need of the introduction of a new
operator for the layered structures. The results are very promising.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite structures are widely used in industry due to their
excellent weight-specific mechanical properties. However, the
price to be paid is a more complex behavior with respect to classi-
cal monolithic ones. In particular, a high computational effort is
required for obtaining accurate stress fields due to material heter-
ogeneity and anisotropy, even if their geometry often calls for the
application of structural models of reduced dimensionality like
beams (slender solids) and plate/shells (thin solids). Nevertheless,
in many cases high stress gradients are limited to several local
domains of interest, while large portions of the structure can effec-
tively profit of the global geometric slenderness and/or thinness. In
light of an optimization of the computational effort, it appears thus
interesting to model these large portions of the structure by means
of classical structural models, which rely on low-order kinematics
assumptions such as Euler–Bernoulli’s or Kirchhoff–Love’s, and to
employ a refined description for the local regions in which an ade-
quate resolution of the stress gradients is required. Such global–
local analysis technique is well known, in which most often a solid
(3D) model is used for the local domains [1]. Instead of using a full
3D model, in many cases it is however possible to employ struc-
tural models of lower dimensionality and refined, higher-order
kinematics. This way, a further reduction of the computational

effort may be achieved without degrading the local accuracy in
the framework of a global–local analysis method. Within this
scope, the present work aims at developing a dedicated technique
to couple beam Finite Elements formulated with heterogeneous
kinematics, where a low-order classical kinematics is used in a glo-
bal, ‘‘simple’’ sub-domain and a refined, higher-order one in a local,
‘‘complex’’ sub-domain.

First applied to the multiphysics environment, the coupling of
different sub-domains has been a subject of several research activ-
ities from which different techniques are available today. These can
take into account the coupling of domains of homogeneous dimen-
sionality but heterogeneous kinematical description, or domains of
heterogeneous dimensionality and homogeneous kinematical
description. In the following, the commonly used techniques shall
be classified following the topology of the arrangement of the
domains: sub-domains with complete and partial overlap as well
as non-overlapping sub-domains will be distinguished. Such a clas-
sification appears in fact more intuitive than a comparison includ-
ing the question of homogeneous or heterogeneous dimensionality.

The complete overlap is first considered. Fish et al. [2,3]
improved the accuracy of results by superimposing additional
mesh of higher-order hierarchical elements in the region of inter-
est. This method is called the superposition version of the Finite
Element Method (FEM), also known as the s-Version of the FEM.
Homogeneous boundary conditions along the common boundary
are applied to keep the C0 continuity of the displacements. The dis-
placement field in the local area is thus obtained as the sum of the
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higher order mesh and the global mesh. The solution for homoge-
neous dimensional problems is obtained directly with incompati-
ble meshes. Reddy and Robbins [4] proposed to combine the
variable kinematics Finite Elements with the s-Version approach.
This represents an extension of Fish’s method in that it couples
Finite Elements with different mathematical model types. So, the
local overlay mesh of variable kinematic elements can include both
Equivalent Single Layer and LayerWise approaches. While both
mentioned techniques resort to a simultaneous solution of the
overlapping domains, Gendre et al. [5] developed an iterative
method for domains with different description. Their two-scale
analysis method for local sub-domains combines local and global
contributions. The global domain is assumed to have linear elastic
properties, which can be also homogenized, while material and
geometric non-linearity can be included for the local domain. It
uses a two-scale approximation of the Schur complement of the
local domain’s stiffness matrix. The use of a weighted combination
of Dirichlet and Neumann boundary conditions on the local
domain enables relatively low number of iterations and assures
the convergence of the solution.

As far as the techniques with partial overlap are concerned, Ben
Dhia et al. [6] proposed the so-called Arlequin method. Three
regions are here considered: a domain using a simple kinematical
model, a domain using a complex kinematical model and the
sub-domain where both domains overlap. The connection in the
superposition zone is performed in a weak sense via Lagrange Mul-
tipliers, and the total internal energy is partitioned between the
overlapping models. The Arlequin method was systematically used
by Hu and coworkers to analyze sandwich structures for both lin-
ear [7] and nonlinear applications [8,9]. In these applications, the
Arlequin framework has been used to couple coarse and refined
models, including both dimensionally homogeneous and heteroge-
neous models, as well as a FE model with a known solution. Biscani
and coworkers continued this approach by referring to dimension-
ally homogeneous sub-domains with low-order and high-order
kinematics for beams [10] and plates [11]. Note that the superpo-
sition volume of the Arlequin method can be degenerated to a sur-
face coupling of the domains. However, some perturbations are
induced close to the interface due to the coupling formulation
between the domains.

Finally, non-overlapping techniques are widely used in open lit-
erature. The classical Lagrange Multipliers method allows to link
the displacements between two adjacent subdomains by adding
an interface constraint functional in the mechanical formulation
of the problem. The interface potential was first proposed by Prag-
er [12] to treat internal physical discontinuities by linking the
unknowns of the sub-domains through a single Lagrange Multipli-
ers field. This classical, two-fields formulation was used in [13] to
combine variable kinematic models in the framework of the Carre-
ra’s Unified Formulation for beam structures. The mortar method is
also mentioned, which provides the well-suited Lagrange Multipli-
ers space [14]. The Lagrange Multipliers method was also
employed for a global/local approach with incompatible FE meshes
by introducing an independent displacement field at the interface
(three-fields formulation) [15]. Ransom extended this technique
for different solution methods, like finite differences, Finite Ele-
ments and finite volumes [16]. Note the substantial works of Park
and Felippa and their systematic development of hybrid function-
als for the analysis of partitioned systems with Lagrange Multipli-
ers [17,18]. In these works, the rigid-body modes in the governing
equation of floating subdomains are explicitly separated in order to
attain the solvability condition. Both static and dynamic problems
are addressed. However, these approaches require a degree of free-
dom compatibility.

As an alternative, Blanco et al. [19] developed the so-called
eXtended Variational Formulation (XVF), in which two Lagrange

Multipliers fields are introduced. It allows to couple structural
models with different dimensionality involving different types of
degrees of freedom. As Lagrange Multipliers can disturb the
banded form of the linear system describing the mechanical prob-
lem, Kim [20] developed a special interface element, avoiding
Lagrange Multipliers. The continuity of the displacements is
ensured through the interface element domain with new specific
shape functions constructing by moving least square approxima-
tions. The numerical integration is a difficult task in this approach.

In commercial FE codes, global/local analysis can be performed.
The overall domain is described with a simple or low order kine-
matical model, and local sub-domains can be modeled by refined
descriptions. At the common border, the results of the simple
model are used as boundary conditions of the local sub-domain.
Calculations are usually carried out in at least two subsequently
steps, but iterative methods can also be applied. We can also men-
tion Multiple Point Constraints (MPC) which are available in com-
mercial codes. A kinematics constraint on the degrees of freedom
(dofs) can be imposed at the common interface between two mod-
els. This technique does not require additional dofs. Nevertheless,
it does not rely on an energy principle. Recently, a MPC formulation
for eigenfrequency calculation and dynamic contact problems was
developed by Hetherington et al. [21].

In the present work, the so-called XVF approach is extended to
couple heterogeneous kinematics for the modeling of composite
structures within a non-overlapping scheme. The local region of
interest is modeled with a refined Sinus approach previously intro-
duced in [22], which has shown very interesting features, while
classical simple models can be used for the ‘‘global’’ portion of
the structure. A compatibility condition is imposed at the common
interface by introducing two Lagrange Multipliers fields that are to
be chosen according to the specific kinematics used in the adjacent
sub-domains. No additional unknown has to be introduced. The
standard MPC approach via penalty method will be addressed for
the sake of comparison.

We now outline the remainder of the article. The formulation of
the XVF approach is first given. The classical models (namely Euler
Bernoulli and Timoshenko) as well as the refined Sinus model are
subsequently described. Note that all these models have very dif-
ferent features. The transverse shear stress deduced from these
approaches are rather different. Moreover, only the refined model
takes into account the transverse normal deformation. We finally
focus on the coupling of these different models within the particu-
lar XVF framework and on the resulting FEM formulation. Numer-
ical assessments are provided on homogeneous and sandwich
beams for both XVF and penalty methods. A preliminary study is
devoted to the evaluation of each model without coupling. The
influence of the position and the size of the complex zones are dis-
cussed. Special attention is also dedicated to the influence of this
coupling on the results close to the interface between the domains.

2. eXtended Variational Formulation (XVF)

Let us consider an elastic structure defined in a domain X � R3

bounded by C ¼ CD [ CN with CD \ CN ¼ ;. The structure is sub-
mitted to prescribed body forces f on X and surface forces t applied
on CN . The displacement �u is imposed on CD. In the present scope, a
beam structure occupying the domain X ¼ 0; l½ � � S is addressed,
where S is the constant cross-section of the beam, and l is the
length. Using the variational formulation, one can state:

Find u 2 U such that:Z
X
rðuÞd�ðuÞdX ¼

Z
X

f � dudXþ
Z

CN

t � dud@X 8du 2 dU ð1Þ

where
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