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a b s t r a c t

For the purpose of design and optimization of multilayered piezoelectric–piezomagnetic material (PPC)
transducers, wave propagation in these structures has received much attention in past ten years. But
the research objects of previous works are only for semi-infinite structures and one-dimensional struc-
tures, i.e., structures with a finite dimension in only one direction, such as horizontally infinite flat plates
and axially infinite hollow cylinders. This paper proposes a double orthogonal polynomial series
approach to solve the wave propagation problem in a two-dimensional (2-D) structure, namely, a layered
PPC bar with a rectangular cross-section. Through numerical comparison with the available reference
results for a purely elastic layered rectangular bar, the validity of the double polynomial approach is illus-
trated. The dispersion curves and mechanical displacement profiles of various layered PPC rectangular
bars are calculated to reveal the wave propagation characteristics.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past ten years, piezoelectric–piezomagnetic compos-
ites (PPC) have received considerable research effort with their
increasing usage in various applications including sensors, actua-
tors and storage devices [1–4]. For the purpose of design and opti-
mization of PPC transducers, wave propagation in various PPC
attracted many researchers.

Chen and Shen [5] obtained effective wave velocity and attenu-
ation factor when axial shear magneto-electro-elastic waves prop-
agate in piezoelectric–piezomagnetic composites. By using the
state space approach, Zhou et al. [6] investigated the bulk wave
propagation in laminated piezomagnetic piezoelectric plates with
initial stresses and imperfect interface. Using the propagator
matrix and state-vector (or state space) approaches, an analytical
treatment is presented for the propagation of harmonic waves in
magneto-electro-elastic multilayered plates by Chen et al. [7]. By
using Legendre orthogonal polynomial series expansion approach,
Yu et al. investigated the guided waves in imhomogeneous mag-

neto-electro-elastic hollow cylinders [8] and spherical curved
plates [9].

In order to analyze the band gaps, wave propagation in piezo-
electric–piezomagnetic periodically layered structures received
attentions [10–12]. Li et al. [13] discussed the penetration depth
of the Bleustein–Gulyaev waves in a functionally graded trans-
versely isotropic electro-magneto-elastic half-space. SH waves
propagating in piezoelectric–piezomagnetic layered structures
with imperfect interfaces were investigated by Sun et al. [14]
and Nie et al. [15]. Pang and Liu [16] discussed the reflection and
transmission of plane waves at an imperfectly bonded interface
between piezoelectric–piezomagnetic media. By using the Jacobi
elliptic function expansion method, Xue et al. [17] investigated
the solitary waves in a magneto-electro-elastic circular bar. Matar
et al. [18] used Legendre and Laguerre polynomial approach for
modeling of wave propagation in layered magneto-electro-elastic
media. Xue and Pan [19] discussed the influences of the gradient
factor on the longitudinal wave along a functionally graded mag-
neto-electro-elastic bar. Zhang et al. [20] studied the influences
of initial stresses on Rayleigh wave propagation in a magneto-elec-
tro-elastic half-space.

As can be seen from the above simple review, wave motions in
many magneto-electro-elastic structures have been considered.
But these structures are almost only for semi-infinite structures
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and one-dimensional structures, i.e. structures having a finite
dimension in only one direction, such as horizontally infinite flat
plates and axially infinite hollow cylinders. In practical applica-
tions, many sensitive elements have limited finite dimension in
two directions. One-dimensional models are thus not suitable for
these structures. On the other hand, wave propagation in purely
elastic 2-D structures has been addressed by researchers. Kastrzh-
itskaya and Meleshko [21] proposed an exact analytical method for
an effective solution of the problem of rectangular waveguide.
Taweel et al. [22] used a semi-analytical finite element method
to study the layered rectangular bars. Also using a semi-analytical
finite element method, Hayashi et al. [23] analyzed square bars and
rail waveguides. Gunawan and Hirose [24] investigated the rectan-
gular bars by boundary element method. By means of standard
commercial finite element codes, Sorohan et al. [25] investigated
a layered composite plate and a square tube.

In this paper, a double orthogonal polynomial series approach is
proposed to solve wave propagation in a 2-D PPC structure, namely
a multilayered PPC bar with a rectangular cross-section. Traction-
free and open-circuit boundary conditions are assumed in this
analysis. Two cases are considered: the material stacking direction
and the polarizing direction are identical and orthogonal to each
other, respectively. The dispersion curves and the mechanical dis-
placement profiles of various layered PPC rectangular bars are pre-
sented and discussed.

2. Mathematics and formulation of the problem

We consider a multilayered piezoelectric rectangular bar which
is infinite in the wave propagation direction. Its width is d, the total
height is h ¼ hN , and the stacking direction is in the z-direction, as
shown in Fig. 1. Its polarization direction is in the z direction. The
origin of the Cartesian coordinate system is located at a corner of
the rectangular cross-section and the bar lies in the positive
y� z-region, where the cross-section is defined by the region
0 6 z 6 h and 0 6 y 6 d.

For the wave propagation problem considered in this paper, the
body forces, electric charges and current density are assumed to be
zero. Thus, the dynamic equations for the rectangular bar are gov-
erned by
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where Tij; ui; Di and Bi are the stress, elastic displacement, electric
displacement and magnetic induction components respectively and
q is the density of the material.

The relationships between the generalized strain and general-
ized displacement components can be expressed as
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where eij; Ei and Hi are the strain, electric field and magnetic field, /
and W the electric potential and the magnetic potential
respectively.

We introduce the function Iðy; zÞ

Iðy; zÞ ¼ pðyÞpðzÞ ¼
1; 0 6 y 6 d and 0 6 z 6 h
0; elsewhere

�
; ð3Þ

where pðyÞ and pðzÞ are rectangular window functions

pðyÞ ¼ 1; 0 6 y 6 d
0; elsewhere

�
and pðzÞ ¼ 1; 0 6 z 6 h

0; elsewhere

�
. By introduc-

ing the function Iðy; zÞ, the traction free and open circuit boundary
conditions (Tzz ¼ Txz ¼ Tyz ¼ Tyy ¼ Txy ¼ Dz ¼ Dy ¼ Bz ¼ By ¼ 0 at
the four boundaries) are automatically incorporated in the constitu-
tive relations of the bar (here the material is assumed to be ortho-
tropic) [26]

Txx ¼ C11exx þ C12eyy þ C13ezz � e31Ez � q31Hz;
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Bx ¼ 2q15exz þ g11Ex þ l11Hx
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where Cij; eij and qij are the elastic, piezoelectric, and piezomagnetic
coefficients respectively; 2ij; gij, and lij are the dielectric, magneto-
electric, and magnetic permeability coefficients respectively.

The layered bar with a stacking direction being in the z-direc-
tion is denoted as z-directional layered bar. The layered bars con-
sidered in the following are all z-directional layered bars if not
indicated specifically. The elastic constants of the layered bar are
expressed as

Cij ¼
XN
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Cn
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where N is the number of the layers; Cn
ij is the elastic constant of the

nth layer and phn�1 ; hn ðzÞ is the rectangular window function. Simi-
larly, other material coefficients can be expressed as
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Fig. 1. Schematic diagram of a multilayered rectangular bar.
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