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a b s t r a c t

In this paper unidirectional fiber composites with imperfect interface conditions between the reinforce-
ment and the filler are considered. The microstructure is periodic and the phases have isotropic proper-
ties. The periodicity of the microstructure is characterized by a parallelogram. Using the concept of a
representative volume element (RVE) a finite element model is developed, in which the distribution of
fibers and imperfect contact conditions between interfaces of phases can vary. Applying appropriate peri-
odic boundary conditions to the chosen RVE effective material properties are derived, where those are
related to a predefined coordinate system. The homogenization technique is validated by comparing
results to literature as far as possible.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The research on techniques to determine or approximate effec-
tive material properties of composites is a large field. For a two
phase composite with randomly distributed inclusions, whose het-
erogeneous material behavior differs from a homogeneous one,
several analytical procedures stated in literature can be used to
approximate the effective coefficients. Famous methods are the
Mori–Tanaka-method [18], the generalized self-consistent scheme
[5,6,13] and the bounds of Hashin and Shtrikman [8,9]. Considering
additional assumptions with respect to the material and the geom-
etry of the inclusion phase closed-form expressions for the coeffi-
cients are derivable.

With the initiation of the computer technology the concept of
the representative volume element (RVE) in combination with a
finite element analysis, given for instance by the software package
ANSYS, gets more and more importance [4,15,21]. By this combina-
tion it is possible to observe periodic and complex structures as
well.

An often used assumption is the perfect bonding of the material
phases, which means continuity in displacements and stresses at
the interface of both phases. Due to production processes it could
be more realistic to consider a three phase composite, where the
third phase deals as coating or adhesion. For instances in Hashin
[13], Andrianov et al. [2], Kari et al. [16] and Yan et al. [24] effective
properties for three phase composites are presented. Assuming a

constant and small thickness of such a coating, the third phase, also
called interphase, can be treated as an interface, which fulfills
appropriate conditions. Such an interface is also called imperfect
interface, since the conditions on the interface consist of jumps
in physical quantities as for instance stresses and displacements.

Often used conditions at the interface are that the traction com-
ponents of the constituents of the composite are defined by differ-
ences or jumps of displacements multiplied with proportionality
factors. This factor is in general given by a constant, which has
N/mm3 as unit of measurement. This type of contact has been stud-
ied for instance by Benveniste [3], Hashin [11–13], López-Realpozo
et al. [17], Andrianov et al. [1] and Otero et al. [19]. In some of these
articles effective material properties are presented.

In this paper a model based on a numerical homogenization
technique is developed, in which unidirectional fiber composites
are considered, where the fibers are arranged in such a pattern,
that a spatial domain with a parallelogram shaped cross section
periodically repeated represents the composite structure. Such
composite structures for the case of perfect bonding between con-
stituents are studied by Golovchan and Nikityuk [7] and Rodrí-
guez-Ramos et al. [20], where only effective out-of-plane
coefficients are presented. By the parametric algorithm rhombic,
hexagonal, square or rectangular fiber arrangements are consider-
able. So a wider class of composite structures can be observed. In
addition the model also takes into account imperfect contact
behavior between the fiber and matrix phase. So the elastic inter-
actions between the phases can be influenced through contact
parameters. This paper can be treated as an extension of a previous
work of Würkner et al. [23], where fiber reinforced composites
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with a microstructure characterized by a rhombic cross section and
an imperfect contact are observed. For verification of the present
model effective composite properties presented within this paper
are compared to others reported in the given literature.

2. Numerical procedure and imperfect modeling

In this section fundamentals of a homogenization procedure
based on the elastic theory and the development of an appropriate
representative volume element (RVE) are presented in order to cre-
ate a finite element model, which consists of two different material
phases (matrix, fiber) and an imperfect interface.

2.1. Homogenization method

For the research within this paper a two phase model is consid-
ered, which consists of a fiber and a matrix phase, where all fibers
have the same radius and they are unidirectional orientated. The
fibers have a circular cross section. In addition with respect to the
transversal plane they are arranged in such a pattern, that a parallel-
ogram characterizes the periodic microstructure. In Fig. 1 the cho-
sen RVE and the considered coordinate system y1, y2 (y3 is
directed out of the plane) can be seen, where the direction of the
coordinates are also used for the representation of the stiffness ten-
sor coefficients in the result section. The cross section geometry of
the RVE is defined by the angle a and the length of the edges l1
and l2. Through varying these parameters in a computer routine it
is possible to construct RVEs characterizing composites with special
fiber arrangements. These cases are presented in Fig. 2. On the left
side a rectangular shaped RVE is shown, where a = 90� and l1 – l2.
In case of equality of the length parameters square fiber arrange-
ments are achieved. In the center of the figure the case of a rhombic
shaped RVE can be seen, where 0� < a < 90� and l1 = l2. This configu-
ration includes a hexagonal fiber distribution with an angle of 60�.
On the right side of the figure an RVE with an arbitrary parallelo-
gram shaped cross section with 0� < a < 90� and l1 – l2 is presented.

The constitutive law in each phase of the composite is given by
the Hooke’s law, which is written in Einstein summation conven-
tion as follows

rij ¼ Cijkl ekl; i; j; k; l ¼ 1;2;3; ð1Þ

where rij, ekl and Cijkl are the coefficients of the stress tensor, the
linear strain tensor and the stiffness tensor, respectively. The sub-
scripts are related to a previously chosen Cartesian coordinate sys-
tem, which is parallel to the system shown in Fig. 1. It is stated, that
the coefficients of Eq. (1) fulfill the symmetry conditions of the lin-
ear elasticity [22] and in addition in case of the stiffness coefficients
the symmetry properties due to isotropic or transversal isotropic
material considerations.

By homogenization techniques in order to evaluate effective
properties it is sufficient to consider a periodic microstructure
denoted as Vrve, which forms the RVE shown in Fig. 1. Due to linear
elasticity in each phase the following equations of equilibrium

@

@yj
rijðyÞ ¼ 0; ð2Þ

hold. At the interface C, which connects the fiber and the matrix
phase, the imperfect contact conditions are given by

rm
rr ¼ rf

rr ¼ Krkurk;
rm

rh ¼ rf
rh ¼ Khkuhk;

rm
rz ¼ rf

rz ¼ Kzkuzk;
ð3Þ

where the values ri
rr ; ri

rh and ri
rz are the surface traction compo-

nents with respect to a cylindrical coordinate system, which are
related to either the fiber (i = f) or the matrix phase (i = m). The
quantities Ki, i = r, h, z are spring type parameters, which have the
dimension of stresses divided by length. The double bar || � || defines
differences of displacements between matrix and fiber phase

kuik ¼ um
i � uf

i ; i ¼ r; h; z: ð4Þ

The parameters Ki, i = r, h, z represent the elastic behavior of the
interface transferring loads between phases. Due to previous inves-
tigations [13] these quantities can be identified from a three phase
problem, where the third phase coating the fiber is very thin. In the
case of an isotropic interphase, they have the form

Kr ¼
Eið1� miÞ

tð1� 2miÞ ð1þ miÞ ;

Kh ¼
Gi

t
;

Kz ¼
Gi

t
;

ð5Þ

where Ei, mi and t are the Young’s modulus, Poisson’s ratio and the
radial directional thickness of the interphase, respectively.

For a complete description of a differential problem in order to
determine effective material properties it is necessary to formulate
appropriate boundary conditions. Since periodic structures are
investigated so called periodic boundary conditions are applied
to the considered RVE. These conditions are derived from the
assumption, that the displacements on the boundary oVrve are a
superposition of a linear and a periodic part uper

i

uiðyÞ ¼ e0
ijyj þ uper

i ðyÞ; ð6Þ

where e0
ij are given quantities [21]. The quantities y and yj are the

vector of location and the jth component of it, respectively. As in
the case of perfect contact condition it is assumed, that the averages
of stresses and strains representing the stresses and strains of the
composite on macro level are given by

hriji ¼
1

Vrvej j

Z
@Vrve

rirnryj dS; ð7Þ

hekli ¼
1

Vrvej j

Z
@Vrve

uknl þ ulnk dS; ð8Þ

where ni is the ith component of the outer normal vector of the RVE
[3]. The effective coefficients of the composite Ceff

ijkl can be derived
from the relation

hriji ¼ Ceff
ijklhekli; ð9Þ

which represents the constitutive law of the homogenized compos-
ite material. From the Eqs. (7) and (8) it can be shown, that the
relations
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Fig. 1. Composite structure and considered RVE with geometric parameters.
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Fig. 2. Possible cases for cross sections of the RVE modeled by the present
algorithm, left: rectangle, middle: rhomb, right: parallelogram.
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