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a b s t r a c t

The homogenization of periodic hexachiral and tetrachiral honeycombs is dealt with two different
techniques. The first is based on a micropolar homogenization. The second approach, developed to analyse
two-dimensional periodic cells consisting of deformable portions such as the ring, the ligaments and
possibly a filling material, is based on a second gradient homogenization developed by the authors. The
obtained elastic moduli depend on the parameter of chirality, namely the angle of inclination of the
ligaments with respect to the grid of lines connecting the centers of the rings. For hexachiral cells the aux-
etic property of the lattice together with the elastic coupling modulus between the normal and the asym-
metric strains is obtained; a property that has been confirmed here for the tetrachiral lattice. Unlike the
hexagonal lattice, the classical constitutive equations of the tetragonal lattice turns out to be characterized
by the coupling between the normal and shear strains through an elastic modulus that is an odd function of
the parameter of chirality. Moreover, this lattice is found to exhibit a remarkable variability of the Young’s
modulus and of the Poisson’s ratio with the direction of the applied uniaxial stress. Finally, a simulation of
experimental results is carried out.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Auxetic materials, having zero or negative Poisson’s ratio, are
characterized by non-conventional mechanical response with
respect to many common materials: they become thicker width-
wise when stretched lengthwise and thinner when compressed
[1]. Although some natural materials may be classified as auxetic,
this quality is mostly obtained in man-made materials [2]. This
unusual mechanical behavior may result in an increased stiffness
and indentation resistance of the auxetic material and a higher
toughness due to an increase of the energy absorption under static
and dynamic loading, thus making these smart materials of special
technological interest (see [3]). The auxetic effect occurs in cellular
materials, such as foams (see [4]), honeycomb structures and net-
works [5] and origami structures [6], as the result of the unfolding
of re-entrant cells as they are stretched. The design of auxetic
materials is mostly addressed to periodic cellular composites [7]
through the analysis and optimization of periodic manufacturable
cells [8,9]. In addition to the periodic microstructures based on
re-entrant mechanisms, auxetic materials based on mechanisms
of rotating rigid and semi-rigid units [10] and on rolling-up
mechanisms [11] have been developed. This latter mechanism

occurs in two-dimensional honeycomb structures composed of cir-
cular rings periodically located in the material plane and joined by
straight ligaments characterized by chiral (see Fig. 1) or anti-chiral
topologies.

Alderson et al. [12,13], carried out experiments on samples
having both chiral and anti-chiral periodic cells subjected to uniax-
ial compression, together with numerical simulations of the exper-
imental results obtained by a standard FE homogenization of the
periodic cell. While a rather good agreement in the overall elastic
moduli was found for the hexachiral cell (Fig. 1(a)), qualitative dif-
ferences were obtained between the experimental and numerical
results for the tetrachiral cell. Further theoretical and experimental
analyses have been carried out by Lorato et al. [14] and Cicala et al.
[15], to investigate the transverse elastic properties of chiral hon-
eycombs, and by Chen et al. [16], to derive the in-plane elastic
moduli of anti-tetrachiral lattices. Moreover, Ma et al. [17], have
performed static and dynamic testing on anti-tetrachiral honey-
combs, with rings filled with metal rubber particles in order to
obtain prescribed dynamic performances.

With reference to the chiral topologies, the study of the
mechanical behavior of hexachiral structures started from the
seminal paper by Prall and Lakes [11], and was later developed
to include the analysis of damage processes (see [18]) and of free
wave propagation [19]. Afterwards, Tee et al. [20], applied a FE
analysis based on the Floquet–Bloch approach to obtain the
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phononic properties of the tetrachiral periodic cell. Gatt et al. [21],
proposed a homogenization model for anti-tetrachiral systems
based on a beam-lattice model and verified its reliability through
a FE modeling of the periodic cell. An analysis of the overall elastic
properties of chiral and anti-chiral cellular solids was carried out
by Dirrenberger et al. [22,23], that is based on the classical homog-
enization approach through a finite element discretization of the
periodic cell. This approach has been extended by Dirrenberger
et al. [24], to the analysis of the elasto-plastic response of hexachi-
ral ductile materials.

Spadoni and Ruzzene [25], developed a micropolar homogeni-
zation of the hexachiral beam-lattice model (see Fig. 2(b)) based
on the approach of Kumar and McDowell [26], that is equipped
with an internal length directly associated with the characteristic
size of the microstructure. The overall elastic moduli of the equiv-
alent micropolar continuum were found to depend on the chirality
parameter b measured by the angle of inclination of the ligaments
with respect to the grid of lines connecting the centers of the rings.
Moreover, the classical elastic moduli of the equivalent trans-
versely isotropic continuum, i.e., the overall Young’s modulus
and Poisson’s ratio, were derived so improving the estimation of
the Poisson’s ratio obtained from Prall and Lakes [11]. A further
improvement of the micropolar homogenization of hexachiral
beam-lattice was obtained by Liu et al. [27], which have shown
that the chiral geometry determines a coupling between the bulk
deformation and the pure rotation. This effect is described by an
elastic modulus that is an odd function of the chirality angle b,
namely it reverses its sign when the material pattern is flipped
over. Despite this improvement of the micropolar model, the

resulting overall elastic moduli of the classical continuum are
unchanged from those obtained by Spadoni and Ruzzene [25].

The results by Liu et al. [27], Spadoni and Ruzzene [25], con-
cerning the hexachiral beam-lattice model (Fig. 2(b)) provide a
richer description of the dependence of the elastic moduli on the
chirality and deserve to be extended to the tetrachiral geometry
(Fig. 2(b)). On the other hand, the beam-lattice model can be
regarded as appropriate for very slender ligaments, a circumstance
that does not seem to occur in some samples used in experiments
where the effective length of the ligament is not easy to identify.
Furthermore, this model does not include the presence of the filling
material between the ligaments and inside of the rings. For these
reasons it seems necessary to define an equivalent continuum at
the macroscale, preferably a non-local continuum equipped with
internal lengths, which is based on a FE description of the periodic
cell. Although a smart technique for micropolar homogenization of
two-dimensional cells [28] is available, there are considerations
that limit its use (see [29]) and suggest computational homogeni-
zation techniques based on second gradient continuum models
(see [30–34]). To support this choice, some studies aimed to define
the elastic properties of chiral materials according to the strain
gradient elasticity [35–38] may be regarded as a reference for
the validation of numerical simulations.

In this paper the overall elastic moduli for both hexachiral and
tetrachiral periodic cells (Figs. 2 and 3) are obtained with reference
to both the micropolar and second displacement gradient contin-
uum models. At first, the cellular materials are modeled as beam
lattices having rigid circular rings and elastic beams with rigid
ends to represent the ligaments and a micropolar equivalent

(a) (b)
Fig. 1. (a) Hexachiral lattice; (b) tetrachiral lattice.

Fig. 2. Hexachiral periodic cells: (a) two-dimensional; (b) beam-lattice. Fig. 3. Tetrachiral periodic cells: (a) two-dimensional; (b) beam-lattice.
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