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a b s t r a c t

A postbuckling analysis is presented for a functionally graded composite cylindrical shell reinforced by
single-walled carbon nanotubes (SWCNTs) subjected to torsion in thermal environments. The multi-scale
model for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shells under torsion is
proposed. A singular perturbation technique along with a two-step perturbation approach is employed to
determine the buckling load and postbuckling equilibrium path. The numerical illustrations concern the
torsional buckling and postbuckling behavior of perfect and imperfect, FG-CNTRC cylindrical shells under
different sets of thermal environmental conditions. The results for uniformly distributed CNTRC shell,
which is a special case in the present study, are compared with those of the FG-CNTRC shell. The results
show that the linear functionally graded reinforcements can increase the buckling torque as well as
postbuckling strength of the shell under torsion when the reinforcement has a symmetrical distribution.
The results reveal that the carbon nanotube volume fraction has a significant effect on the buckling load
and postbuckling behavior of CNTRC shells under torsion.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The postbuckling behavior of functionally graded carbon nano-
tube-reinforced composite (CNTRC) cylindrical shells subjected to
either axial compression or external pressure in thermal environ-
ments was the subject of a recent investigation [1,2]. A functionally
graded CNT reinforced aluminum matrix composite was recently
fabricated by a powder metallurgy route to support the concept
of functionally graded materials in the nanocomposites [3]. Conse-
quently, investigations on the bending, buckling and vibration
behaviors of functionally graded CNTRC beams [4–10], plates
[11–19], shells [20–24] and panels [25–29] are identified as an
interesting field of study in recent years.

Torsional buckling analysis is a difficult task for cylindrical
shells. This is due to the fact that the solution becomes more com-
plicated in the case of cylindrical shells under torsion. The notable
contributions pertaining to the torsional postbuckling analysis of
isotropic and composite cylindrical shells are available in Loo
[30], Nash [31], Yamaki and Matsuda [32], Chehil and Cheng
[33]. Recently, Shen [34] presented the postbuckling behavior of
FGM cylindrical shells subjected to torsion in thermal environ-
ments. In his study, the material properties were considered to

be temperature-dependent and the effect of temperature rise
and/or heat conduction on the postbuckling behavior was
reported. It is concluded that the torsional postbuckling equilib-
rium path of moderately long FGM cylindrical shells is weakly
unstable and the shell structure is virtually imperfection-
insensitive.

For an isotropic cylindrical shell under torsion, the classical
solutions proposed by Loo [30] and Nash [31] are formed as

W ¼W1 sinðpX=LÞ sinðnY=Rþ knX=RÞ ð1Þ

W ¼W1½1� cosð2pX=LÞ� sinðnY=Rþ knX=RÞ ð2Þ

where the parameter k is determined by minimizing the strain
energy. Loo’s solution was also adopted by Chehil and Cheng [33]
for a composite laminated cylindrical shell and by Huang and Han
[35] for an FGM cylindrical shell. It is worth noting that both Eqs.
(1) and (2) can not satisfy boundary conditions such as simply sup-
ported or clamped at the end of the cylindrical shell and may then
be as approximate solutions.

It has been shown [1], the governing equations for an CNTRC
cylindrical shell are identical in form to those of unsymmetric
cross-ply laminated cylindrical shells. Tabiei and Simitses [36]
attempted to give more accurate solutions for laminated cylindri-
cal shells under torsion. They suggested solutions formed as
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Since sufficient numbers of unknown parameters are retained, the
solutions of Eq. (3) could satisfy both compatibility and boundary
conditions, but they do not satisfy equilibrium equation, and there-
fore, the Galerkin method had to be performed.

It has been reported [37] that, there exists a shear stress along
with an associate compressive stress when the anisotropic shell is
subjected to torsion. This will help us to have a better understand-
ing of the mechanism for CNTRC cylindrical shells under torsion.

In the present study, the nanocomposite shells are assumed to
be functionally graded in the thickness direction using single-
walled carbon nanotubes (SWCNTs) serving as reinforcements
and the shells’ effective material properties are estimated through
a micromechanical model, in which the CNT efficiency parameter
is estimated by matching the elastic modulus of CNTRCs observed
from the molecular dynamics (MD) simulation results with the
numerical results obtained from the extended rule of mixture.
The governing equations are based on a higher order shear
deformation shell theory with a von Kármán-type of kinematic
nonlinearity and include thermal effects. A singular perturbation
technique along with a two-step perturbation approach is
employed to determine the buckling torque and postbuckling equi-
librium path. The nonlinear prebuckling deformations and initial
geometric imperfections of the shell are both taken into account.
The numerical illustrations show the full nonlinear postbuckling
response of CNTRC cylindrical shells subjected to torsion in envi-
ronmental conditions.

2. Multi-scale model for functionally graded CNTRC shells under
torsion

Consider an CNTRC cylindrical shell with mean radius R, length
L and thickness h. The shell is referred to a coordinate system (X, Y,
Z) in which X and Y are in the axial and circumferential directions
of the shell and Z is in the direction of the inward normal to the
middle surface. The corresponding displacements are designated
by U; V and W . Wx and Wy are the rotations of the normals to
the middle surface with respect to the Y and X axes, respectively.
The origin of the coordinate system is located at the end of the
shell in the middle plane. The shell is assumed to be geometrically
imperfect, and is subjected to a torque uniformly applied along the
edges. Denoting the initial geometric imperfection by W�ðX;YÞ, let
FðX; YÞ be the stress function for the stress resultants defined by
Nx ¼ F;YY ; Ny ¼ F;XX and Nxy ¼ �F;XY , where a comma denotes par-
tial differentiation with respect to the corresponding coordinates.

Reddy and Liu [38] developed a simple higher order shear
deformation shell theory. This theory was a modification of the
Sanders shell theory and accounts for parabolic distribution of
the transverse shear strains through the thickness of the shell
and tangential stress-free boundary conditions on the boundary
surfaces of the shell. As has been shown [34] this theory can accu-
rately predict the torsional buckling of single layer FGM shells. The
advantages of this theory over the first order shear deformation
theory are that the number of independent unknowns
(U;V ;W;Wx and Wy) is the same as in the first order shear deforma-
tion theory, but no shear correction factors are required. Based on
Reddy’s higher order shear deformation theory with a von Kármán-
type of kinematic nonlinearity and including thermal effects, the
governing differential equations for an FG-CNTRC cylindrical shell
can be derived in terms of a stress function F, two rotations Wx

and Wy , and a transverse displacement W , along with the initial
geometric imperfection W�. They are

~L11ðWÞ � ~L12ðWxÞ � ~L13ðWyÞ þ ~L14ðFÞ � ~L15ðNTÞ � ~L16ðMTÞ

� 1
R

F;XX ¼ ~LðW þW�; FÞ ð4Þ

~L21ðFÞ þ ~L22ðWxÞ þ ~L23ðWyÞ � ~L24ðWÞ � ~L25ðNTÞ þ 1
R

W;XX

¼ �1
2

~LðW þ 2W�;WÞ ð5Þ
~L31ðWÞ þ ~L32ðWxÞ � ~L33ðWyÞ þ ~L34ðFÞ � ~L35ðNTÞ � ~L36ðSTÞ ¼ 0 ð6Þ
~L41ðWÞ � ~L42ðWxÞ þ ~L43ðWyÞ þ ~L44ðFÞ � ~L45ðNTÞ � ~L46ðSTÞ ¼ 0 ð7Þ
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and the other linear operators ~Lij ( ) are defined as in Shen [1]. Note
that the geometric nonlinearity in the von Kármán sense is given in
terms of ~L( ) in Eqs. (4) and (5).

The temperature field is assumed to be a uniform distribution
over the shell surface and through the shell thickness. In the above
equations, NT ; MT ; ST , and PT are the forces, moments and higher
order moments caused by elevated temperature, and are defined by
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where DT = T � T0 is the temperature rise from some reference tem-
perature T0 at which there are no thermal strains, and
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where a11 and a22 are the thermal expansion coefficients measured
in the longitudinal and transverse directions, and Qij are the trans-
formed elastic constants with details being given in [38]. Note that
for an FG-CNTRC layer, Qij ¼ Qij in which

Q11 ¼
E11

1� m12m21
; Q22 ¼

E22

1� m12m21
; Q 12 ¼

m21E11

1� m12m21
;

Q16 ¼ Q26 ¼ 0; Q 44 ¼ G23; Q55 ¼ G13; Q 66 ¼ G12 ð11Þ

where E11, E22, G12, m12 and m21 are the effective Young’s and shear
moduli and Poisson’s ratio of the FG-CNTRC layer, respectively.
The material properties of FG-CNTRCs are assumed to be graded
in the thickness direction, and are estimated through a microme-
chanical model, as expressed by [11]

E11 ¼ g1VCNECN
11 þ VmEm ð12aÞ

g2

E22
¼ VCN

ECN
22

þ Vm

Em ð12bÞ

g3

G12
¼ VCN

GCN
12

þ Vm

Gm ð12cÞ

where ECN
11 ; ECN

22 and GCN
12 are the Young’s and shear moduli of the

CNTs, Em and Gm are the corresponding properties for the matrix,
and the gj(j = 1,2,3) are the CNT efficiency parameters, respectively.
In addition, VCN and Vm are the volume fractions of the CNT and the
matrix, which satisfy the relationship of VCN + Vm = 1.

As mentioned previously [1,2], the load transfer between the
nanotube and polymeric phases is less than perfect (e.g. the surface
effects, strain gradients effects, intermolecular coupled stress
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