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a b s t r a c t

The prime aim of the current study is to predict the free vibration behavior of third-order shear deform-
able nanobeams in the vicinity of postbuckling configuration and in the presence of surface effects which
includes surface elasticity, residual surface stress and surface inertia. To accomplish this end,
Gurtin–Murdoch elasticity theory within the framework of third-order shear deformation beam theory
is employed. In order to satisfy the balance conditions between the bulk and surfaces of nanobeam, a
cubic distribution is considered for the normal stress through the thickness. By using Hamilton’s
principle, the non-classical governing differential equations of motion including von Karman geometric
nonlinearity are derived. After using generalized differential quadrature (GDQ) method to discretize
the governing equations on the basis of Chebyshev–Gauss–Lobatto grid points, the pseudo-arc length
continuation technique is utilized to solve the eigenvalue problem. The natural frequencies of nanobeam
corresponding to the both prebuckling and postbuckling domains are obtained for various buckling mode
shapes based on the numerical solution strategy. It is demonstrated that in the prebuckling domain of the
first vibration mode shape, increasing of beam thickness leads to lower natural frequency for all types of
boundary conditions, but this behavior becomes reverse in the postbuckling domain.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to miniaturization of electromechanical systems, nano-
beams have been widely used for different applications such as
strain sensors [1], optical nanocavities [2], and nano-irradiation
[3]. Hence, the studies concerned with mechanical behaviors of
the beams at nanoscale have been gaining much attention in
nanomechanics. However, in nanostructures, the discontinuous
between the sub-bodies of the system are considerable which
affect the mechanical characteristics of the small-scale structures
namely size effects. As a result, the predictions of the classical
continuum theory for the behaviors of nanostructures are made
questionable. So, various modified continuum models have been
proposed and applied to remove this essential deficiency of the
classical continuum theory [4–15].

One of such molecular effects is surface energy which has been
clearly indicated and explained [16,17]. Because of different envi-
ronment conditions, atoms at or near a free surface have different
equilibrium requirements than the atoms have in the bulk of the

material. This difference causes excess surface energy as the
surface can be interpreted as a layer to which certain energy is
attached [18]. Due to high ratio of surface area to volume in nano-
structures, the effects of surface energy can be significant. Gurtin
and Murdoch [19,20] developed a theoretical framework based
on the continuum mechanics including surface energy effects.
Based on this type of continuum elasticity theory, the surface is
simulated as a mathematical membrane of zero thickness with
different material properties from the underlying bulk which is
completely bonded by the membrane. Herein, some of the investi-
gations carried out about the effect of surface energy on the
mechanical behaviors of nanostructures are cited.

Wang and Feng [21] and Abbasion et al. [22] studied the free
vibrations of microsclae beam including surface effects based on
Euler–Bernoulli and Timoshenko beam theories, respectively. Tian
and Rajapakse [23] applied the Gurtin–Murdoch elasticity to take
into account the surface-interface stress effects on the elastic field
of an isotropic matrix with a nanoscale elliptical inhomogeneity. Lu
et al. [24] used Gurtin–Murdoch elasticity theory to propose a gen-
eralized refined theory incorporating the influence of surface stress
for functionally graded films. Zhao and Rajapakse [25] examined
the axisymmetric solutions for an elastic layer subjected to surface

http://dx.doi.org/10.1016/j.compstruct.2014.05.035
0263-8223/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +98 21 66405844; fax: +98 21 66419736.
E-mail address: mbahrami@aut.ac.ir (M. Bahrami).

Composite Structures 116 (2014) 552–561

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier .com/locate /compstruct

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2014.05.035&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2014.05.035
mailto:mbahrami@aut.ac.ir
http://dx.doi.org/10.1016/j.compstruct.2014.05.035
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


loading including surface energy effect. Fu et al. [26] investigated
the influences of surface energy on the free vibration and buckling
of nanobeams in the both linear and nonlinear regimes using
Galerkin’s technique. Ansari and Sahmani [27] used Gurtin–
Murdoch elasticity theory to predict the bending and buckling
behaviors of nanobeams. They performed an analytical solution
to obtain explicit formulas for critical buckling of nanobeams in
the presence of surface effects. Gheshlaghi and Hasheminejad
[28] examined the nonlinear flexural vibrations of simply sup-
ported Euler–Bernoulli nanobeams via an exact solution method
with consideration of surface stress effect. The free vibration char-
acteristics of rectangular nanoplates including surface stress effect
were investigated by Ansari and Sahmani [29]. They implemented
the Gurtin–Murdoch elasticity theory into the classical first-order
shear deformation plate theory to capture size effect. Recently,
Ansari et al. [30,31] predicted the postbuckling characteristics of
nanobeams in the presence of surface stress by using Gurtin–Mur-
doch elasticity theory within the framework of Euler–Bernoulli and
Timoshenko beam theories, respectively. They also investigated
the surface effects on the nonlinear forced vibration response of
nanobeams using surface elasticity theory [32].

A pioneer study on vibrations in the vicinity of buckled config-
uration of beams was conducted by Nayfeh and Emam [33]. They
presented the vibrations of buckled beams around the postbuck-
ling domain based on a closed-form solution. Rahimi et al. [34]
studied recently the vibrations of functionally graded Timoshenko
beams around the first buckled configuration by neglecting the
in-plane inertia.

In the most cases, it is not easy to obtain exact solutions for
complicated nonlinear problems, such as vibration of postbuckled
beams. Therefore, proposing reliable numerical solution methodol-
ogy to solve this type of problem can be an excellent approach.
Motivated by this matter, the objective of the present study is to
anticipate the surface effects on the nonlinear vibration response
of third-order shear deformable nanobeams in the vicinity of
postbuckling configuration based on a numerical solution strategy.
Gurtin–Murdoch elasticity theory within the framework of

third-order shear deformation beam theory is employed to develop
non-classical beam model which has the capability to capture sur-
face effects efficiently.

2. Preliminaries

Consider a nanobeam of length L, width b, and thickness h sub-
jected to the axial compressive load N0x. A coordinate system
(x,y,z) is attached to the neutral axis of the nanobeam as the x-axis
is taken along the length of the beam, the y-axis along the width,
and the z-axis along the thickness of nanobeam. Among various
types of the classical beam theory, in the third-order shear defor-
mation beam theory, there is no shear correction factor to estimate
the distribution of shear strain across beam thickness. In this the-
ory, it is assumed that the transverse shear strain is assumed to be
distributed parabolically through the beam thickness as shown in
Fig. 1. According to this type of beam theory, the components of
displacement vector for an arbitrary point can be defined as
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in which U(x, t), W(x, t) and W(x, t) stand for, respectively, the axial
displacement of the center of sections, the lateral deflection of the
beam, and the rotation angle of the cross section with respect to
the vertical direction. The components of strain tensor for a third-
order shear deformable nanobeam can be approximated by the
von Karman relation as
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On the basis of the linear elasticity, the non-zero stress compo-
nents for the nanobeam can be introduced as

Fig. 1. Schematic view of a third-order shear deformable nanobeam with the kinematic parameters and coordinate system.
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